Skip to content

Optical Properties

dielectric function in micro-scale

𝛿𝜌=𝜒𝛿𝜙ext=𝑃𝛿𝜙𝜖𝛿𝜙=𝛿𝜙ext𝛿𝜙=𝜖1𝛿𝜙ext

where:

  • 𝛿𝜌: Change in charge density
  • 𝜒: Electric susceptibility
  • 𝛿𝜙ext: External potential change
  • 𝑃: Polarization function
  • 𝜖: dielectric function
  • 𝛿𝜙=𝛿𝜙ext+𝛿𝜙ind: total potential change, which is sum of changes in the external potential and induced one

INFO

the short formula is used above equations

(𝜒𝛿𝜙ext)(𝒓,𝒓,𝜔)=d𝒓𝜒(𝒓,𝒓,𝜔)𝛿𝜙ext(𝒓,𝒓,𝜔)

From these equations, we obtain the following equations straightforwardly

𝜖=1𝑣𝑃𝜖1=1+𝑣𝜒𝜒=𝑃+𝑃𝑣𝜒

where:

  • 𝑣: Coulomb potential

RPA Approxiamation:

𝑃=𝛱

where

  • 𝛱: Kohn-Sham density response function
ϵ(r,r,ω)=δ(rr)drv(rr)𝛱(r,r,ω)

macroscale dielectric function

𝒒^𝜖mac(𝒒,𝜔)𝒒^=1/[𝜖1(𝒒,𝜔)]0,0

without local field correction

𝜖mac(𝒒,𝜔)𝜖0,0(𝒒,𝜔)

in this case, the macroscoptic dielectric function is obtained by following way

𝜖0,0(𝒒,𝜔)=1𝑣0(𝒒)𝑃0,0(𝒒,𝜔)

only, 0,0 component of 𝑃 is needed, being the low computational cost.

local field correction

𝒒^𝜖mac(𝒒,𝜔)𝒒^=1/[𝜖1(𝒒,𝜔)]0,0

in this case, all matrix element of 𝜖μν(𝒒,𝜔) is needed to calculate the inverse of matrix. See the Adler for the details.

relation with optical functions

  • 𝑛: refractive index
𝑛=𝜖mac,1+𝜖mac,12+𝜖mac,222
  • 𝜅: extinction coeffcient
𝜅=𝜖mac,1+𝜖mac,12+𝜖mac,222
  • 𝑅: reflectance
𝑅=(𝑛1)2+𝜅2(𝑛+1)2+𝜅2