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Abstract

This explains details of ecalj on the based on Refs.[1] and [2] (These are contained at ecalj/-

Document/Manual/ as Kotani2114QSGWinPMT.pdf and KotaniKinoAkai2015FormulationPMT.pdf)

on top of developments [3].
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1 Overview of PMT-QSGW algorithm

The ecalj package is based on the PMT method (=Linearized APW+MTO method) [1, 4, 5],

which is a unique mixed basis method using two kinds of augmented waves simultaneously.

With ecalj, we can do

� Total energy calculation and atomic-position relaxations within LDA, GGA and LDA/GGA+U.

In addition, we can add spin-orbit coupling and so on (some limitations).

� QSGW calculations (quasiparticle self-consistent GW). Since it is on top of the PMT

method, we call the QSGW method in ecalj as the PMT-QSGW method [2]. The calcu-

lation of self-energy can give impact ionization energy.

� The maximally localized Wannier functions. cRPA is implemented.

� We can calculate linear responses (dielectric and magetic).

� We use module-based coding in latest fortran (still on the way half). In principle, all the

data are stored in modules, where data are genereted/read by subroutines in modules.

Virtually, all the data are protected. When we read data in modules, we declear variables

by use,only. Thus it is not so difficult to figure out where a data is modified or generated.

Original QSGW had implemented in the LMTO[6], while the LMTO-QSGW is very diffi-

cult to use. In contrast, PMT-QSGW is rather easier to use.

In addition, we added another developments to the original LMTO-QSGW; some ideas are

from papers Ref.[7] by Friedrich, Blügel, and Schindlmayr, and Ref.[8] by Freysoldt et al. In

this Sec. 1, we try to explain some details along the line of Ref.[2].

1.1 Crystal structure, notations, and common data in code

We use unit alat (measured by a.u.=0.528177Å) as the unit in the code. Thus, to convert

quantities in the unit of a.u., we multiply alatḢere is some common notations in ecalj .

� Primitive cell vectors pi (in a.u.) are alat*plat(1:3,i), where i=1,2,3. For exampke,

see LATTC, which appears in work/si_gwsc after install test (plat=PLAT given in ctrl

file). qi=qlat(1:3,i) is reciprocal unit vectors such that sum(plat(1:3,i),qlat(1:3,j))=δij .

� The centers of MT sites {R} in the primitive cell is given by {R} =alat*bas(1:3,ibas),ibas=1,nbas

(we use pos,natom in cases instead of bas,nbas). {R} is the position vector measured

from a center of primitive cell. nbas is number of atoms.

� Thus the MT sites are specified by R + T, where T specify centers of primitive cells.

T(n1, n2, n3) = n1q1 + n2q2 + n3q3.

� In the followings, we use k and q (in cases, mixed up... sorry), both of which means

vectors in the BZ. In procedures such as k + k′, we sometimes need to pull it back to

the BZ (then k+k′ may be written as k+k′ = k′′ +G, where G is a recprocal vector).

� We specify MTs (atoms) in the primitive cell in ctrl file, where the MTs with the same

SPEC (species) can be further divided into some classes (CLASS). Thus NBAS >= NSPEC

>= NCLASS. The numbering of MTs (ibas=1,nbas) are given by the order of SITE in ctrl

file. We can use lmchk to check how they are divided into CLASS.

� iclass(ibas) is the id for class. The crystallographcally equivalent MT sites should

have the same class id as iclass(ibas1)=iclass(ibas2). However, for the convenience

of program developments (historical reason), I assume ibas=iclass(ibas) for GW part

of programs.
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1.2 structure of ecalj

Make procedure generates fortran programs.

lmfa,lmf-MPIK,lmfgw-MPIK, lmf2gw, and lmchk are main programs for lmf part. Look

into main/lmv7.F, which is the main programs of lmf-MPIK and lmfgw-MPIK. main/lmv7.F

have a line call M_lmfinit_init(prgnam). Then initial data are set by reading ctrl file.

Except v_ssite,v_sspec, all data are protected.

Others are the GW-related and the Wannier-related programs (Wannier source codes are

in wannier/ directory).

For GW, we run programs successively as given by scripts gwsc and so on. In gwsc, the

stage up to lmf2gw is the preparation stage. After we run lmf2gw, we have files

BZDATA EPSwklm QGcou QPLIST.lmfgw efermi.lmf

CLASS GWinput QGpsi lmfgw_kdivider evec.*

CphiGeig HAMindex Q0P QIBZ vxc.*

DATA4GW_V2 ZBAK QBZ QPLIST.IBZ

These are files required for performing GW calculations. We start GW part from rdata4gw,

which just reformat these files. We do not read rst as well as ctrl in the GW part.

Duplicated informations are kept in CLASS, DATA4GW_V2, and HAMindex. (and something

else, a little confusing). I think we need to clean up a little more.

———————-

Here is a list of variables for GW part (not everyting...).

alat: unit in a.u. This is in LATTC

plat: primitive vector. this is in LATTC (or call genallc_v3)

qlat: reciprocal primitive vector

\delta_ij= sum(plat(:,i)*qlat(:,j))

QpGcut_psi: cutoff to determine G vector for eigenfunction

|q+G|< QpGcut_cou (in a.u.)

CAUTION: in code, we usually represent q and G in the unit of

2pi/alat, thus the cutoff is (in the program)

2*pi/alat*sum((q+G)**2))< QpGcut_cou**2

QpGcut_cou: cutoff to to determine G vector for Coulmb matrix

|q+G|< QpGcut_psi

===

genalloc_v3: this allocate variables in m_genallc_v3. some variables are

natom: number of MTs in the primitive cell.

corresponding to nbas, we usually use ibas for do loop

as "do ibas=1,nbas". Instead of nbas, we sometimes use natom.

pos(1:3,nbas): MT centers for R within the cell

Cartesian cordinates in the unit of alat.

ngrp: number of space group operations.

tiat miat: private in m_zmel

Space group operations. See document in subrouitne mptauof in suham.F

----------

Memo for hx0fp0.sc.m.F and so on.

ixc: control of job, read by fortran read

call getkeyvalue("GWinput","ecut_p" ,ecut, default=1d10 )

This read "ecut_p" given in GWinput.

We can read arrays x (real, integer, logical) by the same

getkeyvalue (interface judge type of arguments). Instead of read the
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getkeyvalue.F, check how it is used.

call read_BZDATA():

This allocate and give data related to the BZ.

After it is called, we have data given in the m_read_bzdata

as shown in "use m_read_bzdata,only:"

ngrp: number of space group operation

nqbz: = n1 x n2 x n3, # of BZ

nqibz: # of irreducible k points in the BZ.

qbas: probably the same as qlat

ginv: inverse of qlat (essentially the same as plat, but transposed).

dq_: shift vector for qbzreg mode

This is for qbzreg(). (When qbzreg=F, BZ mesh do not

contain Gamma point). This mechanism should be reconsidered.

qbz: q point in the BZ

qibz: qpoints in the irrecucible BZ.

wbz: weight. 1/(n1*n2*n3)

wibz: weight for qibz.

qbzreg():

If F, we use off-Gamma mesh for qbz.

Radial mesh: hbasfp0

a,b, rofi,nr (or aa,bb, nrad).

MT site radial data. Radial integrals are only in

subroutine basnfp_v2 in hbasfp0.m.F.

We assume r(ir)=b*(exp(aa*(ir-1)-1.), ir=1,nr

rhoMT is read.

1.3 Representation of eigenfunctions

In the PMT method [9], the valence eigenfunctions for a given H0 are represented in the linear

combinations of the Bloch-summed MTOs χk
RLj(r) and the APWs χk

G(r);

Ψkn(r) =
∑
RLj

zknRLjχ
k
RLj(r) +

∑
G

zknG χk
G(r), (1)

where we use indexes of the wave vector k, band index n, and reciprocal lattice vector G.

The MTOs in the primitive cell are specified by the index of MT site R, angular momentum

L = (l,m), and j for radial functions. As for core eigenfunctions, we calculate them under the

condition that they are restricted within MTs. Then we take into accounts the contributions of

the cores to the exchange part defined in Eq. (18) in the following. But not to the correlation

part. (caution: we now usally apply “core1 treatment” give in Ref.[3] for all cores. Rarely use

core2).

1.3.1 MTO part

Within MTs, the Bloch sum of the MTO, χk
RLj(r), is expressed by a linear combination of

atomic like orbitals ARLj(r) ≡ {ϕRLj(r), ϕ̇RLj(r), ϕ
z
RLj(r)} × YL. (ϕz means local orbital).

These radial functions are solutions of the radial Schrödinger equations(or their energy deriva-

tives) within R. The MTO basis is specified by smHankel functions which contains two

parameters (E = −|κ|2, Rsm).

ARLj(r) makes orthonormalized basis for each MT R. Then the MTO including tail part

can be written as

χk
RLj(r) =

∑
RLj

Ck
RLjA

k
RLj(r) if r ∈ any MT

= Hκ,Rs,k
RL (r) otherwise, (2)
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where we use the Bloch sums,

Ak
RLj(r) ≡

∑
T

ARLj(r−R−T) exp(ikT), (3)

Hks(r) ≡
∑
T

Hs(r−R−T) exp(ikT). (4)

Here the smoothe Hankel functions Hks(r) are the envelope functions of MTOs.

The MTOs have the symmetry of the angular momentum L. This is also the casee for any

atomic-like localized functions. All such kinds of functions follow the same mapping formulas

by space-group operations. See Sec.H.

1.3.2 APW part

The APW χk
G(r) are given as a linear combination of atomic like orbitalsARLu(r) ≡ {ϕRlu(r)YL(r̂), ϕ̇Rlu(r)YL(r̂)}

within MTs, and just the usual plane waves within the interstitial region. Here ϕRlu(r) and

ϕ̇Rlu(r) denote two solutions of the radial Schrödinger equations at an energy enu for each l

(an usual choice of enu is the center of gravity of occupied PDOS). ϕ̇ means energy derivatives

(or something similar). u is the composite index to diffrenciate ϕ and ϕ̇. R is the index to

specify MTs in the primitive cell. The APW basis is specified by s ≡ RjL, where L ≡ (l,m)

is the angular momentum index, and j is the additional index (principle quantum number or

so). ARLu(r) makes normalized-orthogonal basis in each MT R. The APW can be written as

χk+G(r) =
∑
au

Ck+G
au Ak

au(r) if r ∈ any MT

= exp(i(k+G)r) otherwise, (5)

where we use the Bloch sums,

Ak
Ru(r) ≡

∑
T

ARu(r−R−T) exp(ikT), (6)

The number of G is limited by the condition |k+G| < QpGcut psi (IPWpsi). The coeffi-

cients αkn
au can be calculated as

αkn
au =

∑
G

Ck+G
au zk+G

n . (7)

1.4 Re-expansion of eigenfunctions: CPHI and GEIG

To perform the GW calculation, we first have to prepare all eigenfunctions (and eigenvalues)

for given setting of BZ mesh. Then the eigenfunctions are represented as follows; we re-

expand Ψkn(r) in Eq. (1) as the sum of the augmentation parts in MTs and the PW parts in

the interstitial region.

Ψkn(r) =
∑
Ru

αkn
Ruφ

k
Ru(r) +

∑
G

βkn
G Pk

G(r), (8)

where the interstitial plane wave (IPW) is defined as

Pk
G(r) =

{
0 if r ∈ any MT

exp(i(k+G) · r) otherwise
(9)

and φk
Ru(r) are Bloch sums of the atomic functions φRu(r) defined within the MT at R,

φk
Ru(r) ≡

∑
T

φRu(r−R−T) exp(ik ·T). (10)

T and G are lattice translation vectors in real and reciprocal spaces, respectively. We explain

how they can be represented in codes in Sec. ??.

We expand the eigenfunctions as the sum of the augmentation parts in MTs and the PW

parts in the interstitial region

Ψkn =
∑
Ru

αkn
Ruϕ

k
Ru(r) +

∑
G

βkn
G Pk

G(r) (11)

This is Eq.(17) in Ref.[2]. Here, Files CPHI contains the information of αkn
Ru and GEIG contains

βkn
G . We use subroutines readcphi and readeig to read them; see m_zeml.F for example.
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(In future, we may start from better representation based on the 3 component formalism in

Ref.[1].)

We need Ψkn for given q points (in this text, we mix up q and k... Sorry.). Then Pk
G(r) is

just specified by G, which is generated by qg4gw. ϕk
Ru(r) is specified by radial functions. It is

contained in PHIVC read in hbasfp0.m.F. Number of radial functions are ncore(ic)+nrad(ic)

(dependes on l, n, σ, but not on m). For simplicity, maximum of l is fixed by LMXA in ctrl

file. It must be the same for all MTs.

In the GW calculation of ecalj, important matrix elements related to the eigenfunction is

only the matrix element as

⟨Eq
µΨkn|Ψq+kn′⟩, (12)

, where Eq
µ is the MPB (an unitary transformation of MPB). The information of eigenfunctions

are used to calculate this matrix elements, which is read by get_zmel.

Coefficients of Eq. (8) (here is MTO part only) are calculated as

αkn
au =

∑
s

Cks
auz

kn
s (13)

βkn
G =

∑
G′s

⟨Pk
G|Pk

G′⟩−1⟨Pk
G′ |Hks⟩zkns , (14)

where the number of G is limited by the condition |k+G| < QpGcut psi; G′ is by |k+G′| <
QpGcutHakel.

1.5 Overview of GW calculation

In the GW calculation, we need not only the basis set for eigenfunctions, but also the basis

set for expanding the product of eigenfunctions. The basis is called the mixed product basis

(MPB) {Mk
I (r)} first introduced in Ref.[10] by Kotani. The MPB consists of the product

basis (PB) within MTs [11] and the IPW in the interstitial region. Since {Mk
I (r)} contains

IPWs which are not orthogonal, we define dual for {Mk
I (r)} as

|M̃k
I ⟩ ≡

∑
I′

|Mk
I′⟩(Ok)−1

I′I , (15)

Ok
I′I = ⟨Mk

I′ |Mk
I ⟩. (16)

From vkIJ = ⟨Mk
I |v|Mk

J ⟩, we calculate the eigenfunction for the generalized eigenvalue prob-

lem defined by
∑

J(v
k
IJ − vkµO

k
IJ)w

k
µJ = 0, where vµ(k) are the eigenvalues of the Coulomb

interaction matrix. Then we have the Coulomb interaction represented by matrix elements as

v(k) =
∑
µ

|Ek
µ⟩vµ(k)⟨Ek

µ |, (17)

where we define a new MPB |Ek
µ(r)⟩ =

∑
J |Mk

J ⟩wk
µJ , which is orthonormal and is diagonal to

the Coulomb interaction v(k). For the all-electron full-potential GW approximation, Eq. (17)

is introduced in Ref.[7]. This corresponds to the representation in the plane wave expansion

v(k + G,k + G′) =
4πδGG′
|k+G|2 . µ = 1 corresponds to the largest eigenvalue of vµ, and vµ=1 is

∼ 4πe2

|k|2 , which is related to the divergent term discussed in Sec.5.

With the definition of ⟨A|B⟩ =
∫
d3rA∗(r)B(r), the exchange part of Σ(ω) is written as

Σx
nm(q) = ⟨Ψqn|Σx|Ψqm⟩ = −

BZ∑
k

occ∑
n′

⟨Ψqn|Ψq−kn′Ek
µ⟩vµ(k)⟨Ek

µΨq−kn′ |Ψqm⟩. (18)

The screened Coulomb interaction W (ω) is calculated from

W = ϵ−1v = (1− vΠ)−1 v, (19)

where the Lindhard polarization function Π(ω) is written as

Πµν(q, ω) =

BZ∑
k

occ∑
n

unocc∑
n′

⟨Eq
µΨkn|Ψq+kn′⟩⟨Ψq+kn′ |ΨknE

q
ν ⟩

ω − (εq+kn′ − εkn) + iδ

+

BZ∑
k

unocc∑
n

occ∑
n′

⟨Eq
µΨkn|Ψq+kn′⟩⟨Ψq+kn′ |ΨknE

q
ν ⟩

−ω − (εkn − εq+kn′) + iδ
. (20)
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When time-reversal symmetry is assumed (if Ψkn is the eigenfunction, Ψ∗
kn is also the eigen-

funtion with the same eigenvalue εkn), Π(ω) is simplified to be

Πµν(q, ω) =

BZ∑
k

occ∑
n

unocc∑
n′

⟨Eq
µΨkn|Ψq+kn′⟩⟨Ψq+kn′ |ΨknE

q
ν ⟩

×
(

1

ω − εq+kn′ + εkn + iδ
− 1

ω + εq+kn′ − εkn − iδ

)
. (21)

This definition is the same as that in the Fetter-Walecka text book. At ω = 0, this is negative

definite matrix. Im part at any ω is negative definite matrix. This is even function of ω.

To evaluate Eq. (20) or Eq. (21), we first accumulate the imaginary parts (anti-Hermitian

part) of Πµν(q, ω) along bins of histograms on the real axis ω by the tetrahedron technique

[12], and then determine the real part via the Hilbert transformation. The bins are dense near

the Fermi energy and coarser at higher energy as described in Ref.[6]. This procedure is not

only more efficient but also safer than the methods of calculating the real part directly. We

also use the extended irreducible zone (EIBZ) symmetrization procedure described in Ref.[7].

The correlation part of the screened Coulomb interaction W c(ω) = W (ω) − v, which is

calculated from v and Π(ω), is given as

W c(k, ω) =
∑
µν

|Ek
µ⟩W c

µν(k, ω)⟨Ek
µ |. (22)

With this W c(k, ω), we have the correlation part of the self-energy as

Σc
n,n′(q, ω) =

∑
k,m

∫ ∞

−∞
dω′

∑
µ,ν

⟨Ψqn|Ψq−kmE
k
µ⟩W c

µν(k, ω
′)⟨Ek

νΨq−km|Ψqn′⟩e−iδω′

ω − ω′ − ϵq−km ± iδ
. (23)

Here, we use −iδ for occupied states of q−km, and +iδ for unoccupied states. In QSGW, we

have to calculate the Hermitian part of Σnn′(q, ϵqn), to obtain V xc
q using Eq. (??).

There are two key points to handle the GW procedure given above. The first key point,

given in Sec.5, is the improved offset-Γ method, which treats the divergence of W c(k → 0, ω)

in Eq. (23). For this purpose, we define the non-divergent effective interaction W c(k = 0, ω)

instead of W c(k = 0, ω). Then we can take a simple discrete sum for both expressions of

Eqs.(18) and (23).

The second point in Sec.10 is how to perform an interpolation to give V xc
q at any q in the

whole BZ, from V xc
q calculated only at limited numbers of q points. This is required in the

offset-Γ method shown in Sec.5, that is, we have to calculate eigenfunctions at some q points

near q = 0. For the interpolation, we expand the static nonlocal potential V xc in Eq. (??) in

highly localized MTOs in real space. Thus such MTOs are used for two purposes: one as the

basis of the eigenfunctions; and two as the basis of expanding V xc. The interpolation procedure

of V xc
k (r, r′) becomes stabler and simpler than the complicated interpolation procedure in

Ref.[6]. This is because we now use highly localized MTOs. In the planewave-based QSGW

method by Hamann and Vanderbilt [13], they expand V xc in the maximally localized Wannier

functions instead of MTOs.

In practical implementation, the LDA or GGA exchange-correlation potential V xc
LDA is

used to perform efficient numerical calculations. That is, it is used in order to generate core

eigenfunctions as well as radial functions within MTs (in this paper, we use the subscript LDA

even when we use GGA. “LDA/GGA” means LDA or GGA). The difference V xc−V xc
LDA is used

for the interpolation in the BZ (explained in Sec.10), because this difference is numerically

small as long as V xc
LDA roughly gives an approximation to V xc. This procedure utilizing V xc

LDA

to perform efficient numerical calculations give a very weak dependence to the final numerical

results in practice as seen in Sec.??, although the results formally does not depend on the

LDA/GGA exchange-correlation functions.

2 q and G vector generation. qg4gw

... xxxxx under construction xxxxx...

To see the theory, read Section 3.2 in in [2] k points are the regular mesh points used for the
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integration in the BZ. Regular mesh points are given as

ki1,i2,i3 = (i1/N1) ∗P1 + (i2/N2) ∗P2 + (i3/N3) ∗P3 (24)

, where Pi is the primitive vector 2π
alat

× Quantities f(k) (periodic in BZ) can be integrated

just as a sum on the regular mesh points. However, when f(k = 0) is divergent, we have

careful treatments.

qlat(:,i1), where qlat=Qi is the reciprocal vectors. See Sec.3.2 .

mkqg.F is the main part of qg4gw (fpgw/main/qg4gw.F). iq0pin is the job control of

mkqg. iq0pin=101 is only for backward compatibility. The purpose is generates required

q and G vectors. Not only regular mesh points, or q along symmetry lines, but also offset

Gamma points.

iq0pin=1: normal mode. Generate q and G for regular mesh point and Q0P points (offset

Gamma points).

iq0pin: input to qg4gw

ncindx, lcindx

getkeyvalue

phi

radial mesh

CLASS

symgg

core, radial functions

2.0.1 Make G vectors: getgv2

To get G vectors, we use an algorithm in fpgw/getgv2.F, whose head is

subroutine getgv2(alat,plat,qlat,q, QpGcut,job,

o ng, ngvec)

!! == Set up a list of recip vectors within cutoff |Q+G| < QpGcut a.u. ==

!! job==1 -> return ng (number of G ) and imx(as ngvec(1,1));mar2012takao add imx.

!! job==2 -> return ng and ngvec

!! True G is given as

!! G(1:3,1:ng) = 2*pi/alat * matmul(qlat * ngvec(1:3,1:ng))

!! NOTE: we need some geometorial consideration for this routine.

!! Consiser ellipsoid. Takao need to give more detailed explanation...

!! -------------------------------------------------------------

We can use this to get {G} for given q. The algorism of getgv2 is a little complicated. We

first gives the upper and lower limits n1max ≤ n1 ≤ n1min, where G = n1Q1 + n2Q2 + n3Q3,

n2 and n3 as well.

... xxxxx under construction xxxxx...

Algorithm of getgv2.

Let us consider the three dimensional space of x = q + G. For given q, allowed G make a

set of regular mesh points {q + G}. The purpose of getgv2 is picking up only mesh points

satisfying |q+G| <QpGcut among these mesh points.

At first, we can calculate allowed range of n1 for given maximum of |q + G| (=QpGcut).

Note |x| = |q+G|=QpGcut gives a sphere; we have to pick up mesh points within the sphere.

When we spefcify n1, we have a plane (allowing n2, n3 can take any values). The range is

determined by the condition that the sphere |q+G|=QpGcut cross the plane specified by n1

(exactly speaking, such n1 is real number). The vector normal to the plane is the external

product Q2 ×Q3.

After we get the range of n1, as well as n2, n3 , we simply test whether q+G for (n1, n2, n3)

is allowed or not.

10



2.0.2 Make G vectors: shortn3

Find shortest vector in modulo of {Qi}. That is, pull back q in the 1st BZ. Caution; it can

be not unique when q is on the BZ boundary; then we need to know all q and degeneracy.

3 Mixed Product basis

The mixed product basis consists of two types of basis sets, that is the product basis and the

IPW: {Mk
I (r)} ≡ {Pk

G(r), Bk
Rµ(r)}, where the index I ≡ {G,Rµ} classifies the members of

the basis. The PB Bk
Rµ(r) is defined as

Bk
Rµ(r) =

∑
T

BRµ(r−R−T)eik·T, (25)

where BRµ(r) is made from the products of radial functions. BRµ(r) is real and zero for

outside of MT, |r| > R (See Sec.3.1). We set up {BRµ(r)} so that they are orthonormalized;∫
|r|<R

BRµ(r)BRµ′(r)d3r = δµµ′ . (26)

In addition, it is trivial that {BRµ(r)} and {Pk
G(r)} are orthogonal. Thus only the elements

of overlap matrix is

Ok
IJ =

∫
Ω

{Mk
I (r)}∗Mk

J (r)d
3r, , (27)

because {Pk
G(r)} are not orthogonal. Thus it is convenient to define the dual of Mk

I (r) as

M̃k
I (r) in the manner of Eq. (16).

Functions made from the product of eigenfunctions can be virtually completely expanded

in the basis of Mk
I (r) in this manner;

Fk(r) =
∑
I

Mk
I (r)FI(k)

FI(k) =

∫
Ω

{M̃k
I (r)}∗Fk(r)d3r.

(28)

—- NOTE: —- Now we use Coulomb matrix orthogonalized basis {Ek
µ} as discussed in

Eq. (17).

3.1 Product basis (hbasfp0)

We denote the radial function of atom a as

uaplσ(r) = rϕaplσ(r), (29)

where the index p takes 1 for ϕ, 2 for ϕ̇, 3 for local orbital as well. We do not allow m

dependence (m is m of L = (l,m).) for the radial functions. In addition, p can taks indexes

to specify core functions: we combine core and valence functions (these are stored in PHIVC,

which read in hbasfp0.m.F). Here is a part of copy to read PHIVC in hvccfp0.m.F

ifphi = iopen(’PHIVC’, 0,-1,0)! augmentation wave and core
read(ifphi) nbas, nradmx, ncoremx
allocate( ncindx(ncoremx,nbas),

& lcindx(ncoremx,nbas),
& nrad(nbas), nindx_r(1:nradmx,1:nbas),
& lindx_r(1:nradmx,1:nbas),
& aa(nbas),bb(nbas),zz(nbas), rr(nrx,nbas), nrofi(nbas) ,
& phitoto(nrx,0:nl-1,nn,nbas,nsp),
& phitotr(nrx,0:nl-1,nn,nbas,nsp),
& nc_max(0:nl-1,nbas),ncore(nbas) )
read(ifphi) nrad(1:nbas)
read(ifphi) nindx_r(1:nradmx,1:nbas),lindx_r(1:nradmx,1:nbas)
nc_max=0
do ibas=1,nbas
write(6,*)’ --- read PHIVC of ibas=’,ibas
ic = ibas
read(ifphi) ncore(ic), ncoremx !core
read(ifphi) ncindx(1:ncoremx,ibas),lcindx(1:ncoremx,ibas) !core
read(ifphi) icx,zz(ic),nrofi(ic),aa(ic),bb(ic)
if(ic/=icx) then
write(6,*) ’ic icx=’,ic,icx

11



call rx( ’hbasfp0: ic/=icx’)
endif
read(ifphi) rr(1:nrofi(ic),ic)
do isp = 1, nsp
write(6,*)’--- isp nrad ncore(ic)=’,isp, nrad(ic),ncore(ic)
do icore = 1, ncore(ic)
l = lcindx(icore,ic)
n = ncindx(icore,ic)
read(ifphi) phitoto(1:nrofi(ic),l,n, ic,isp)!core orthogonal
phitotr(1:nrofi(ic),l,n, ic,isp)= !we set core raw= core orthgonal

& phitoto(1:nrofi(ic),l,n, ic,isp)
if(n>nc_max(l,ic)) nc_max(l,ic)=n

enddo
do irad = 1, nrad(ic)
l = lindx_r (irad,ic)
n = nindx_r (irad,ic) + nc_max(l,ic)
read(ifphi) phitoto(1:nrofi(ic),l,n, ic,isp) !valence orthogonal
read(ifphi) phitotr(1:nrofi(ic),l,n, ic,isp) !valence raw

enddo
enddo

enddo

[note: The orthonomalized radial functions uaplσ(r) are stored in phitoto; we also

have the un-orthonormalized ones in phitotr.]

Note that the true radial function is ϕaplσ(r) = uaplσ(r)/r. Normalization is 1 =
∫ Ra

0
{uaplσ(r)}2dr =∫ Ra

0
{ϕaplσ(r)}2r2dr. The function uaplσ(r) is stored in phitot.

When producing the product functions, we use spin-averaged function phiav given as

uapl(r) =
1

Nspin

∑
σ

uaplσ(r). (30)

(See subroutine basnfp_v2). From them, we make the product functions rprod

b̃alν(r) =
1

r
uapl(r)uap′l′(r) = rϕapl(r)ϕap′l′(r), (31)

where the index l runs |l− l′| ≤ l ≤ |l+ l′|; ν is the index of the combination (p, p′). Note the

true product functions are given as

B̃alν(r) =
1

r
b̃alν(r). (32)

This relation is as same as ϕapl(r) = uapl(r)/r.

Then we calculate the overlap matrix ovmt,

Oν1ν2 =

∫ Ra

0

B̃alν1(r)B̃alν2(r)r
2dr =

∫ Ra

0

ϕap1l1(r)ϕap′1l
′
1
(r)ϕap2l2(r)ϕap′2l

′
2
(r)r2dr (33)

and solve the eigenvalue problem of the overlap matrix, Ozν = ϵνzν , by call rs(..). (See

basnfp_v2.)

After neglecting eigenvectors zν with eigenvalues ϵν < tolerance ∼ 10−4 (given in GWin-

put, we finally have the optimal product functions as the linear combinations of the product

functions as

balν(r) =
1√
ϵν

∑
ν′

b̃alν′(r)zν′ν , (34)

which are stored in rprodx and written into BASFP* and used in the successive Coulomb

matrix routine hvccfp0.m.f. Of course, true product function is Balν(r) = balν(r)/r.

We check the normalization of the optimal product function in standard output (See lbasC

and lbas when you did gw lmf):

...

Use rs diagonalization for real symmetric

Diag ibx ovv= 1 0.9999999999999930D+00 eb= 0.2716113799D-01 nod= 2

Diag ibx ovv= 2 0.9999999999999980D+00 eb= 0.4993303381D-01 nod= 3

Diag ibx ovv= 3 0.1000000000000001D+01 eb= 0.1467546915D+00 nod= 3

Diag ibx ovv= 4 0.9999999999999996D+00 eb= 0.4415639258D+01 nod= 0

...
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In basnfp, we calculate all the required radial integrations < ϕϕB >=ppbrd;

< ϕϕB >=

∫ Ra

0

ϕap1l1(r)ϕap2l2(r)Balν(r)r
2dr =

∫ Ra

0

1

r
uap1l1(r)uap2l2(r)balν(r)dr, (35)

which are stored into PPBRD*. At call rdpp(... in hx0fp0.m.f hxfp0.m.f, we allocate and

read ppbrd.

In addition, we read the ”rotated Clebsh-Gordon coefficient” C(L,L1, L2, g) cgr(lm,lm1,lm2,ng)

, where g is the index for space group coefficient ( rotated by point group symmetries).

4 The Coulomb matrix (hvccfp0.m.F)

We have to calculate vkIJ = ⟨Mk
I |v|Mk

J ⟩, which appears right after Eq. (16). Our hvccfp0.m.F

can handle the case exp(−|κ||r1−r2|)
|r1−r2|

. The default is the bare Coulomb interaction, that is,

κ = 0. The energy variable E is given by E = κ2, where imaginary part of κ is defined to

be positive for negative E. This E =eee=screenfac() in hvccfp0.m.F. For example, we can

set |κ| = 0.1 (a.u.) by a line ”TFscreen 0.1” in GWinput if necessary. Look for TFscreen in

swithes.F.

The MPB is made of IPWcou (|q+G|<QpGcut_cou) and PB, that is, {Mk
J } = {Pk

G(r), Bk
RliLµ(r)}.

For given k (not explicitly shown in cases for simplicity), IPWcou is specified just by the G

vector. PB can be specified just by the radial functions for each l PB is generated in the manner

of Sec.3 . (because we have neither m nor spin dependence). For GW calculation, we need the

Coulomb matrix elements ⟨B|v|B⟩, ⟨B|v|PG⟩, and ⟨B|v|P ⟩. hvccfp0.m.F-->vcoulq_4 handles

these calculations.

4.1 Spherical Bessel and related functions

We use a notation such that XL(r) = Xl(r)YL(r̂); note that their radial part is dependent only

on l. The ordinary definition of L-dependent spherical For given energy E, Bessel functions

JL(E, r), HL(E, r) are (here we introduce
√
E = κ, where

√
E = κ = i|κ| for E < 0),

JL(E, r) = jl(
√
Er)YL(r̂) =

{
jl(i|κ|r)YL(r̂) for E < 0,

jl(κr)YL(r̂) for E > 0,

HL(E, r) = hl(i|κ|r)YL(r̂) for E < 0, (36)

where jl(z) and hl(z) are usual spherical Bessel and Hankel functions which behaves

jl(z) ∼
zl

(2l + 1)!!

hl(z) ∼
−i(2l − 1)!!

zl+1
(37)

at z ∼ 0. For convenience, we define the Methfessel’s Bessel functions (convension)

J̄L = J̄lYL and H̄L = H̄lYL, where

J̄l(E, r) = jl(i|κ|r)/(i|κ|)l

H̄l(E, r) = hl(i|κ|r)i(i|κ|)l+1. (38)

(memo: for example, 7!! = 7 ·5 ·3 ·1 ;function fac2m(i)). These are real functions for E ≤ 0.

See note for genjh in mkjp.F. At E = 0, this is reduced to be

J̄l(E = 0, r) = rl/(2l + 1)!!,

H̄l(E = 0, r) = r−l−1(2l − 1)!!. (39)

(We use very small negetive E = −10−5 as default instead of E = 0 for Coulomb matrix

generator hvccfp0.m.F to avoid numerical troubles (see default screenfac in switch.F)).

The source codes to define bessl is a little confusing because of some convensions are mixed

up...(note at the beginning of besslr.F).

Main one is call bessel(ex2,lx,phi(0:lx),psi(0:lx)) in mkjp.F. This is defined in

bessl(ex2,lmax,phi,psi) in besslr.F (it calls besslr with loka=F). lx is the upper limit

of l. For given ex2= E × x2, this return spherical Bessel functions jl(κx) in the following
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manner.

J̄l(E, r) = jl(i|κ|r)/(i|κ|)l = phi(l)rl

H̄l(E, r) = hl(i|κ|r)i(i|κ|)l+1 = psi(l)/rl+1

}
for E < 0, κ = i|κ|, |κ| =

√
|E|

J̄l(E, r) = jl(κr)/(κ)
l = phi(l)rl

N̄l(κr) = psi(l) 1
(κ)l+1 = psi(l)/rl+1

}
for E > 0, κ =

√
E (40)

for 0 ≤ l ≤ lmax. These definition gives phi= 1/(2l+ 1)!! and psi= (2l− 1)!! at E → 0. Here

nl(r) is the spherical Neumann functions. That is, psi is for Hankel function for negative E,

and for Neumann function for positive E. See hansmr.F, for example. psi is not used so often.

We have lm7K/subs/besslr.F, it is similar.

For convenience, we sometimes use

R+l = J̄l(E, r)(2l + 1)!! = psi(l)rl(2l + 1)!!,

R−l = H̄l(E, r)/(2l − 1)!! = psi(l)r−l−1(2l − 1)!!. (41)

Here note R+k → rk for E → 0,and R−k → r−k−1 for E → 0. These rR+k, rR−k are

rkpr,rkmr generated in subroutine genjh.

xxxx We may need to simplify our treatment of bessel functions in future... xxxx

Electron-phonon coupling in MPB To calculate derivative for electron-phonon (EP)

coupling, we need

∂

∂ri

(
J̄l(E, r)YL(r̂)

) ∣∣
r=0

=
1

3

√
3

4π
, only for L = 1, zerootherwize. (42)

For real spherical harmonics, cases are: i = y and L = (1,−1); i = z and L = (1, 0); i = x

and L = (1, 1). Because we use MPB, it is necessary to evaluate the the bare matrix element

of the Coulomb interaction between nucleus and ⟨B⟩ as

⟨B|∂v(r−R)

∂Ri
⟩ (43)

4.2 Green function

(Readers can skip this subsection). We explain the free-space Green’s function G(r − r′, E)

here. Let us start from G(r− r′, E), which satisfies

(E + iδ +∇2)G(r− r′, E) = δ(r− r′). (44)

(+iδ is to specify the boundary condition along time axis. This pick up the retarded Green’s

function). Roughly speaking, this is (ω −H)G = 1. Its Fourier transform is easily written as

G(k, E) = 1/(E−|k|2+iδ). We apply back Fourier transformation to this, and get G(r−r′, E).

It is

G(r− r′, E) = − 1

4π

eiκ|r−r′|

|r− r′| , (45)

where κ ≡
√
E; Imaginary part of κ is positive for E < 0, that is, κ = i|κ| = i

√
−E for

negative E. Eq. (45) is nothing but the solution of Helmhorz differential equation; it reduces

to the usual Poisson equation at E = 0. For E < 0, we have Thomas-Fermi type function; the

numerator of Eq. (45) is exp(iκ|r− r′|) = exp(−|κ||r− r′|).

4.3 Used formulas

1

|r− r′| = 4π
∑
K

rk<

rk+1
>

1

2k + 1
Y ∗
K(r̂)YK(r̂) (46)

See Appendix A in Ref.[14]. This is generalized to be

e−|κ||r−r′|

|r− r′| = 4π
∑
K

R+k(r<)R
−k(r>)

1

2k + 1
Y ∗
K(r̂)YK(r̂) = 4π

∑
L

J̄L(E, r<)H̄L(E, r>), (47)

The definition of J̄ , R+l are in Eq. (38) and Eq. (41). Here E < 0 and κ = i|κ| =
√
−E.
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exp(ikr) = 4π
∑
L

iljl(|k|r)Y ∗
L (k̂)YL(r̂) (48)

2l + 1

4π
Pl(cosΘ) =

∑
m

Y ∗
L (r̂1)YL(r̂2) [cosΘ = r̂1 · r̂2]. (49)

⟨Pk
G|Pk

G′⟩ = ΩδG,G′ −
∑
a,L

exp(i(G−G′)Ra)× YL( ̂k+G
′
)YL( ̂k+G)

×
∫ Ra

0

jl(|k+G|r)jl(|k+G′|r)4π2r2dr, (50)

4.4 Hankel function and Structure constant

We can expand v(r, r′) = e−|κ||r−r′|

|r−r′| in the one-center expansion Eq. (47).

For the Hankel function in Eq. (47), we use the off-center expansion theorem of the Hankel

function Eq. (51), that is, a Hankel whose center is at X ≡ R+T, HL(r−X), can be expanded

in the Bessel functions whose center is at X′;

H̄L(E, r−X) =
1

4π

∑
L′

J̄L′(E, r−X′)SX′L′,XL , (51)

where the Hankel function for negative energy E. Here E-dependence of SX′L,XL′ is not

explicitly shown. Note the difference between J̄L and JL (H̄L, as well).

Thus, for (R′,T′) ̸= (R,T), we have two-center expansion;

e−|κ||r+R+T−(r′+R′+T′)|

|r+R+T− (r′ +R′ +T′)| =
∑
L

∑
L′

J̄L(E, r)SR+TL,R′+T′L′ J̄L′(E, r′) (52)

for (R′,T′) ̸= (R,T).

The Bloch sum of SL,XL′ gives the structure constant of k as

Sk
RL,R′L′ =

∑
T′

SRL,R′+T′L′ exp(ikT′). (53)

Usually we use bare Coulomb at E = 0.

No 4π factor in the definition of Sk
RL,R′L′

See the top of strxq defined in strxq.F (called in hvccfp0.m.F). This routine is for the one-

center expansion of usual Bloch summed Hankels. (not for smooth Hankels). This result is

finally converted to be the Bloch sum of the structure constant Sk
RL,R′L′ used in Eq. (54).

====================

NOTE in strxq.F; it says

-------------------------------------

Cr Expansion Theorem: H_{RL}(r) = H_L(r-R)

Cr H_{RL}(E,r) = J_{R’L’}(E,r) * S_{R’L’,RL}

Cr S_R’L’,RL = 4 pi Sum_l" C_{LL’L"} (-1)^l (-E)^(l+l’-l")/2 H_L"(E,R-R’)

-----

CAUTION!: We use R to denote MT position in the primitive cell;

thus this R is R+T in our notation.

--------------------------------

Thus it seeminly 4π factor is missing in 52. However, righ after the subroutine strxq is called,

we have added 4π factor as strx(1:nlx1,ibas1,1:nlx2,ibas2) = fpi*s in hvcc0.m.F. Thus

Eq. 52 don’t include 4π factors.

4.5 ⟨B|v|B⟩ part

Let us start from ⟨B|v|B⟩ part. For this calculation, we need structure constant, and a few

types of radial integrals. With the Bloch-summed structure constant strx = Sk
RL,R′L′ , we
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have

vk(r, r′) =
∑
T′

v(r, r′ +T′)eikT
′
= e2

∑
L,L′

J̄L(E, r−R)Sk
RL,R′L′ J̄L′(E, r′ −R′), (54)

for R ̸= R′. Note that we use e2 = 1 (a.u.) in hvccfp0.m.F. (See note at the beginning of

mkjp.F. And note the normalization check at the end of hvccfp0.m.F; ⟨exp(iqr)|v| exp(iqr)⟩ =
4πΩ/|q|2, where Ω is the cell volume.)

strx calculated by "call strxq@L806:hvccfp0.m.F" means Sk
RL,R′L′ . Note that 4π is

mulipled right after call strxq to obtain strx. This strx is used in call vcoulq_4. nlx1

means (l+1)**2 for R (=ibas1), nlx2 as well.

Except the contribution for (R,T) = (R′,T′), we can evaluate ⟨Bk
RLµ(r)|vk(r, r′)|Bk

R′L′µ′(r′)⟩,
from the

rojb integrals ρl(BRlµ) as

ρl(BRlµ) =

∫ R

0

rJ̄l(E, r) rBRlµ(r)dr =
1

(2l + 1)!!

∫ R

0

rkpr(r) rprodx(r) dr (55)

Here BRlµ(r) is the radial part of BRLµ(r). This rojb integrals are calculated in the subrouitne

mkjb_4 in mkjp.F. We use radial functions rprodox = rBRlµ(r), rkpr= rJ̄l(E, r)(2l+1)!!, and

rkmr= rH̄l(E, r)/(2l − 1)!!. (Here rkpr and rkmr are propotional to rl and r−l−1 for E = 0.)

The contribution from (R,T) = (R′,T′) should be added. This is k-independent, and

given by the

sgbb integral, which is also calculated in mkjb_4.

σl(BRlµ, BRlν) = 4π

∫ R

0

∫ R

0

(r<)J̄l(E, r<)(r>)H̄l(E, r>)rBRlµ(r)r
′BRlν(r

′)drdr′

=
4π

2l + 1

∫ R

0

∫ R

0

rkpr(r<) rkmr(r>) rprodx(n1, r) rprodx(n2, r
′) drdr′. (56)

With the integrals rojb and sgbb, we can calculate ⟨B|v|B⟩ in vcoulq_4 as follows (nbloch

means the total number of PB);

do ibl1= 1, nbloch
ibas1= ibasbl(ibl1)
n1 = nbl (ibl1)
l1 = lbl (ibl1)
m1 = mbl (ibl1)
lm1 = lmbl(ibl1)
do ibl2= 1, ibl1
ibas2= ibasbl(ibl2)
n2 = nbl (ibl2)
l2 = lbl (ibl2)
m2 = mbl (ibl2)
lm2 = lmbl(ibl2)
vcoul(ibl1,ibl2) =

& rojb(n1, l1, ibas1) *strx(lm1,ibas1,lm2,ibas2)
& *rojb(n2, l2, ibas2)

if(ibas1==ibas2 .and. lm1==lm2) then
vcoul(ibl1,ibl2) = vcoul(ibl1,ibl2) + sgbb(n1,n2,l1, ibas1)
! sigma-type contribution. onsite coulomb

endif
enddo

enddo

4.6 RL expansion of |P k
G′⟩

To evaluate ⟨Pk
G|v|Pk

G′⟩, we can use

P̄k
G ≡

(
1−

l≤lPmax∑
RL

PRL

)
ei(k+G)r, (57)

in the place of Pk
G as long as we use large enough lPmax. Here PRL denotes the projection

operator to extract the component of RL contribution. In fact, we use large enough lPmax;

lPmax = 2 × lmax=2*LMXA, where lmax denotes the maximum angular momentum for the ex-

pansion of eigenfunctions within MT (maximum l cutoff for αkn
Ru in Eq. (1)). In the defalut

setting, we use lPmax = 8 since we use lmax = 4.
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The matrix elements ⟨P1|v|P2⟩ can be calculated as

⟨P1(phiphi)|v|P2(phiphi)⟩ =
∑

G1′G1′′G2′G2′′

⟨P1(phiphi)|P1′⟩⟨P1′ |P1′′⟩−1⟨P1′′ |v|P2′′⟩⟨P2′′ |P2′⟩−1⟨P2′ |P2(phiphi)⟩, (58)

where 1 ≡ (k,G1) and so on. Here P1(phiphi) indidates that an IPW made from a product of

IPWs.The matrix elements ⟨P2′′ |P2′⟩−1 (stored into PPOVLG,PPOVLI) and ⟨P2′ |P2(phiphi)⟩
(stored into PPOVLGG) are given at rdata4gw.

4.7 Overlap matrix of PPOVL* files

PPOVL* files contains the overlap matrix of IPWs ⟨Pk
G|Pk

G′⟩ . We have two types of ⟨Pk
G|Pk

G′⟩.
One is for the Coulomb matrix (PPOVLG,PPOVLI). The other is for generating ⟨G(eigenfun.)G(eigenfun.)|G(cou)⟩.
(a product of IPWs of eigenfunctions can be expanded by IPWs for Coulomb matrix).

The overlap matrix elements ⟨Pk
G|Pk

G′⟩ are generated in rdata4gw. These are read and

allocated in the module m_read_ppovl (rppovl.F) when we call getppx2. We have ”call

getppx2” in the subroutine melpln2t in ppbafp.fal.F. The melpln2t is for generating the matrix

element of <IPW psi |psi>.

(1)PPOVLG + PPOVLI:

For q in qibze(1:3,1:nqnumt) (=IBZ + Q0P points),

number of IPWcou =ngc can be dependent of q.

We have <k+G|k+G’>= ppovl(ngc,ngc)

PPOVLG: G vectors as ngvecc(1:ngc).

PPOVLI: ppovl^-1(ngc,ngc). Inverse of PPOVL0

(PPOVL0 is unused now. It is divided into PPOVLG and PPOVLI).

In principle the matrix element itself is k-independent,

(just the difference of G vectors due to periodicity).

But, for convenience, we generate them separately for each k.

(2)PPOVLGG:

This is used for <Gphi Gphi|Gc>.

ppovl(nggg,ngcgp) for nvggg,nvgcgp

Range of G for nvggg is |Gc+Gp+Gp|< |Gcou|+ |Gphi|+ |Gphi|

(triangle inequality.)

This is only for k=0 (Thus we remove k-dependece).

ngcgp

QpGcutggg = (2d0+1d-2)*QpGcut_psi+QpGcut_cou+ 2d0*pi/alat*dQpG

QpGcutgcgp= (1d0+1d-2)*QpGcut_psi+QpGcut_cou+ 2d0* 2d0*pi/alat*dQQ

dQpG, dQQ is to enlarge range related to Q0P points.

4.8 ⟨P k
G|v|P k

G′⟩
To evaluate Eq. (58), we need to know its main part ⟨Pk

G|v|Pk
G′⟩. It is written as

⟨Pk
G|v|Pk

G′⟩ ≈ ⟨P̄k
G|v|P̄k

G′⟩ = ⟨exp(i(k+G)r)|v| exp(i(k+G′)r)⟩ −
∑
RL

⟨Pk+G
RL |v| exp(i(k+G′)r)⟩

−
∑
R′L′

⟨exp(i(k+G′)r)|v|Pk+G′

R′L′ ⟩+
∑
RL

∑
R′L′

⟨Pk+G
RL |v|Pk+G′

R′L′ ⟩, (59)

where Pk+G
RL denotes the projection of PW to RL, That is, Pk+G

RL ≡ PRLe
i(k+G)r.

The first term The first term in the right-hand side of Eq. (59) is

⟨exp(i(k+G)r)|v| exp(i(k+G′)r)⟩ = 4πΩ

|k+G|2 + |E|δGG′ , (60)

because we simply use exp(i(k+G)r) (no prefactor for normalization) for IPW. Here E=eee

is negative (or (almost) zero). This is coded by a line
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if(ig1==ig2) vcoul(ipl1,ipl2) = fpivol/(absqg2(ig1) -eee)

@subr:vroulq_4@L281:mkjp.F.

The second and third term In the second term, we can replace v with 4πΩ
|k+G′|2+|E|

since v is diagonal for | exp(i(k+G′)r)⟩, the third term as well. Without v, we have

⟨exp(i(k+G)r)|Pk+G′

R′L′ ⟩ =
∑
RL

⟨Pk+G
RL |Pk+G′

R′L′ ⟩

=
∑
RL

(pjyl (k+G, L) exp(i(k+G)R))∗ ×RJJ(|k+G|, |k+G′|, l)

×pjyl (k+G′, L) exp(i(k+G′)R), (61)

where we use

Pk+G
RL (r) = 4πiljl(|k+G|r)YL( ̂k+G)YL(r̂) exp(i(k+G)R)

= pjyl (k+G, L)J̄l(|k+G|r)YL(r̂) exp(i(k+G)R), (62)

where r is measured from the center R. Here we use pjyl defined as

pjyl (k+G, L) = 4πil|k+G|lYL( ̂k+G) (63)

(recall the definition of J̄l. In codes, cy(lm)*yl(lm) = YL( ̂k+G).) Search pjyl in mkjp.F.

The Bessel functions appear here in the expansion of PW; see Eq. (48). RJJ(|k+G|, |k+G′|, l)
is given as

RJJ(|k+G|, |k+G′|, l) =
∫ R

0

r2J̄l(|k+G|r)J̄l(|k+G′|r)dr, (64)

which can be calculated by the wronskian (wronskj) by the formula

RJJ(κA, κB, l) =

∫ R

0

r2J̄l(κAr)J̄l(κBr)dr = R2 J̄l(κAr)
dJ̄l(κBr)

dr
− dJ̄l(κAr)

dr
J̄l(κBr)

κ2
A − κ2

B

∣∣∣
r=R

= −fjj (65)

(-fjj is used in mkjp.F. In codes, the contributions to the second and third terms of Eq. (59)

due to RL components are given as (simplified for illustration)

fouvp_ig1_ig2 = fpi/(absqg2(ig1)-eee) &

* dconjg(pjyl_(lm2,ig1)*phase(ig1,ibas2)) &

* (-fjj(l)) * pjyl_(lm2,ig2)*phase(ig2,ibas2)

fouvp_ig2_ig1 = fpi/(absqg2(ig2)-eee) &

* dconjg(pjyl_(lm2,ig2)*phase(ig2,ibas2)) &

* (-fjj(l)) * pjyl_(lm2,ig1)*phase(ig1,ibas2)

Look for the keyword fourvp in mkjp.F. Correspondences are

fpi --> 4 pi

absqg2(ig1) --> |q+G1|**2

-eee --> |E|

lm2 --> L

ibas2 --> R

The forth term The last term of Eq. (59) can be calculated essentially the same manner

with ⟨B|v|B⟩, where we use the Bessel function instead of BRlµ(r) appeared in Sec.4.5. Then

we define integrals rojp and sgpp defined as (in fpgw/gwsrc/mkjp.F);

rojp(RL) = pjyl exp(i(q+G)R)ρl(J̄l) (66)

sgpp(RL,G,G′) = pjyl
∗(ig1) exp(−i(q+G)R)pjyl (ig2) exp(i(q+G′)R)

×radsig,

where radsig = σl(J̄l(|q+G|r), J̄l(|q+G′|r)). (67)

Thus, rojp and sgppmade of coefficients for explansion and radial integral. Search sgpp ig1 ig2

in mkjp.F.
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4.9 ⟨P |B⟩ part

⟨Pk
G|v|Bk

RLµ(r)⟩ = ⟨exp(i(k+G)r)|v|Bk
RLµ(r)⟩ −

∑
R′L′

⟨Pk+G
RL |v|Bk

RLµ(r)⟩

= fouvb(G,RLµ)−
∑
R′L′

rojp ∗ strx ∗ rojb (68)

The first term is stored in fouvb(ngc,nxx,nlxx,nbas) allocated at L824:hvccfp0.m.F. Search

fouvb in mkjp.F. Since v is diagonal to PWs, we can evaluate this in the similar manner of

Eq. (61). The second term can be evaluated from rojb and sgpb in the same manner of last

section.

... xxxxx under construction xxxxx...

(we will detail a little more...)

5 Offset-Γ method; W(k=0) averaged in the Γ cell.

The offset-Γ method, originally invented for Ref.[10] by Kotani (it is described in Ref.[6]),

was a key to perform accurate GW calculation in our papers. It is for the integration of k in

Eqs.(18) and (23), where we have the integrands that diverge at k → 0. The original offset

Γ method works well for highly symmetric systems; however, it may be problematic to apply

to less symmetric systems, because the anisotropic divergence of the integrands may not be

treated accurately.

Here we show an improved offset-Γ method, which treats the anisotropy of W (k, ω) ac-

curately. In the followings, we use expression W (k) for simplicity (omit subscripts and ω)

instead of Wµν(k, ω), since we are concerned with the k integral here.

Let us give a formula for calculating
∫
BZ
f(k)d3k using a discrete sum on k-mesh, where

f(k) = G(q− k)×W (k). For the k-mesh, we use

k(i1, i2, i3) = 2π(
i1
N1

b1 +
i2
N2

b2 +
i3
N3

b3),

where b1,b2, and b3 are the primitive reciprocal vectors (the same as the Eq.(47) in Ref.[6]).

The 1st BZ is divided into N = N1 × N2 × N3 microcells (i1 = 0, 1, ...N1 − 1, and also the

same for i2 and i3.). The microcell including the Γ point is called the Γ cell [15]. The main

problem is how to evaluate the contribution of the Γ cell. The divergent part of f(k) behaves ≈
(analytic function of k) /(kTLk), where kT denotes the transpose of k; L is a 3×3 Hermitian

matrix [7]. We neglect an odd part of k in the above (analytic function of k) because it has

no contribution to the integral around k = 0. Thus it is sufficient to consider the integral for

f(k) whose divergent parts behave as f(k) =
∑

L
fLYL(k̂)

|k|2 at k → 0, where l of L ≡ (l,m) is

restricted to be even numbers. We evaluate the integral using the formula∫
BZ

f(k)d3k ≈ 1

N

k ̸=0∑
f(k) +

∑
L

fLwL +
1

N
f̃, (69)

which is introduced in Ref.[15]. Here the weight wL is determined in a manner as follows, so

as to take into account the contributions of the divergent part of f(k) at k → 0 in the Γ cell.

f̃ is the constant part of f(k) at k → 0.

To determine wL, we can use the following procedure instead of that given in Ref.[15]. We

first introduce the auxiliary function

FL(k) =
∑
G

exp(−α|k−G|2)YL( ̂k−G)

|k−G|2 . (70)

This is a generalization of an auxiliary function used in the offset-Γ method (then we only

used F00 [6]). We usually take the α→ 0 limit, or a sufficiently small α instead. Let us apply

Eq. (69) to FL(k). Then we can evaluate the left-hand side of Eq. (69) exactly (the exact

values are zero except for L = (0, 0)). On the other hand, the first and third terms on the

right-hand side of Eq. (69) can be evaluated numerically. In addition, we know that fL′ for

FL(k) is unity for L′ = L, and zero otherwise. Thus we can determine wL in Eq. (69) so that

Eq. (69) is exactly satisfied for FL(k) for any L.
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Let us apply Eq. (69) to f(k) = G(q − k) ×W (k). Then we perform an approximation

taking only the most divergent term in W (k) in addition to its analytic part. That is, we use

Wµν(k) ∼ W̃µν(0) +
4π

kTLk
δ1µδ1ν (71)

at k → 0. W̃µν(0) = 0 for µ = 1 or ν = 1. See Eq.(36) in Ref.[7] to know what is neglected in

the approximation of Eq. (71).

Then we finally obtain∫
BZ

d3kG(q− k)W (k) ≈
∑

G(q− k)W (k), (72)

where its right-hand side is defined as∑
G(q− k)W (k)

≡ 1

N

∑
k̸=0

G(q− k)W (k) +
1

N
G(q)W (0), (73)

W (0) ≡ N
∑

wLWL + W̃ (0). (74)

Here W (0) is an average of W in the Γ cell. With this W (0), we can evaluate integrals just

as the sum on the discrete k-mesh. When the matrix L is given (a method of calculating L is

given in the next paragraph), the non-analytic (but non-divergent) function kTLk/|k2| is ex-
panded in the spherical harmonics. Then WL is calculated for a given L in the manner shown

in Ref.[7]. We can evaluate the accuracy of integrals with a discrete k-mesh in combination

with the approximation of Eq. (71) by calculations while changing the size of the k-mesh.

[NOTE 2016-03-18:] We now use only wL for L = (0, 0). T.Kotani found strange

behavior for W (ω) for the Wannier functions (for La2CuO4) when we use all wL.

Then I observed non-monotonic behavior of its real part; recall that we should see

monotonic behavior as long as causality is satisfied. I found it is originated from

non zero wL for L ̸= (0, 0). Thus we now use the formula ”wL = 0 for L ̸= (0, 0)”

in Eq. (69).In the case of metal at ω = 0, we have very large L (virtually infinite);

thus no 1/|k|2 behavior.

The remaining problem is how to calculate the matrix L in Eq. (71); there are two possible

ways. One is the k · p method (perturbation) used in Ref.[7]; the other is the numerical

method to calculate L at some k points near k = 0. Here we use the latter method. Because

of the point-group symmetry of the system, L can be expressed by the linear combination of

invariant tensors µg
ij for the symmetry of the unit cell,

Lij(ω) =

Ng∑
g=1

ag(ω)µ
g
ij , (75)

where g is the index of the invariant tensor. The number of g’s Ng, can be from one (cubic

symmetry) through six (no symmetry). It is possible to determine the coefficient ag(ω) from

the dielectric functions k̂T
0iLk̂0i calculated at {k0i} points around k = 0, where {k0i; i = 1, Ng}

is a set of the offset-Γ points. The offset-Γ points are chosen so that the conversion matrix

from k̂T
0iL(ω)k̂0i to ag(ω) is not numerically degenerated. The length |k0i| can be chosen

to be sufficiently enough, but avoiding numerical error as the average of W (k) in the Γ cell.

The improved offset-Γ method shown here can be applicable even to metal cases, as long as

k̂T
0iL(ω)k̂0i contains the contribution of intraband transition.

[NOTE 2016-Nov:] T.Kotani think evaluation of Lij(ω) can be more effectively

performed as for the convergence on number of k points. At least, without local

field correction, we only need to calculate head part. For the head part, we may

use large number of k points.
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6 hx0fp0.sc.m.F. W (k, ω) calculation

. ... xxxxx under construction xxxxx...

7 self-energy

. ... xxxxx under construction xxxxx...

8 Fourier transformation of MTO-Hamiltonian

It is better for you to run job_band first. Then you have QPLIST (after 17jan2018), which

contains q point list for syml.*. In addition, numbers for x-axis is shown (convenient for

plotting).

When you use only MTOs, we can have the tight-binding type (real space) Hamiltonian.

job_ham shows the procedure. Its main part is

mpirun -np 4 ~/ecalj/lm7K/lmf-MPIK fe --quit=band -vpwmode=0 > lmf_efermi

! we get efermi.lmf

mpirun -np 4 ~/ecalj/lm7K/lmf-MPIK fe --writeham --mkprocar --fullmesh -vpwmode=0

! we get HamiltonianMTO.(rankid) and HamitonianMTOInfo files.

cat HamiltonianMTO.* >HamiltonianMTO

! Merge files into a file

~/ecalj/lm7K/lmfham

Here, efermi.lmf contains the Fermi energy (determine it from the calculated energy bands for

the given basis. Potential is rst.* and sigm.*). In addtion, number of electrons and magnetic

moments are shown in it.

Main procedure is ~/ecalj/lm7K/lmf-MPIK fe --writeham --mkprocar --fullmesh -vpwmode=0.

Here, all the requied informations are HamiltonianMTO.* and HamiltonianMTOInfo. These

files contains Hamiltonians Hij(k) and overlap matrix Oij(k). In addition, it contains info for

the set of k points and the set of cell translational vectors T. (And some additional info. See

lm7K/lmham.F). Then we run lmfham (small program). This reads these file, and convert them

to the real space representation as Hij(T) and Oij(T).

Hij(T) =
1

N

∑
k

Hij(k) exp(ikT) (76)

Hij(k) =
∑

T∈T(i,j)

1

nT
Hij(k) exp(−ikT) (77)

Here, N is the number of k points. nT is the degeneracy for T. T(i, j) means a set of T for

given ij (exactly speaking, a pair of atomic sites are specified from orbital index i and j. The

pair of atomic sites determines the set T(i, j)).

Sum check is∑
T∈T(i,j)

1

nT
= 1,

1

N

∑
k

1 = 1. (78)

Completeness relation for the Fourier transformation (combine Eqs.(76) and (77) ) is

δkk′ =
1

N

∑
T∈T(i,j)

1

nT
exp(i(k− k′)T). (79)
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9 Fourier transformation of non-local quantity

We have ”call bloch” in lm7K/fp/bndfp.F. This is for the three dimensional FFT. The usual

FT is by

f(T) =
∑
k

f(k) exp(ikT), (80)

where {k} is are on the regular mesh points. The total number of its members is N1×N2×N3.

(the number is the same as that of {T}). Note that we have periodicity both in k points and

in T points. Because of the periodicity, the range of {k} is not unique, the range of {T} as

well.

Let us think about non-local quantity which is dependent on T−T′. Then we have

f(RT,R′T′) =
∑
k

fRR′(k) exp(ik(T−T′)), (81)

In practical calculations (static version of self-energy treated by bloch called in fp/bndfp.F),

we first calculate fRR′(k) on k of regular mesh points. Then we need to obtain its real-space

representation f(RT,R′T′). Because of the periodicity, we have ambiguity for the choice

of possible |T − T′|. If we introduce T̄ = T − T′, Eq. (81) is written as f(RT̄,R′0) =∑
k fRR′(k) exp(ikT̄) because of translational symmetry.

A reasonable choice is that we allow T̄ which satisfy |R − R′ + T̄| ≤ ηFTmax. Here we

should choose ηFTmax so that the number of alllowed {T̄} is N1 ×N2 ×N3. Howerever, it can

be not possible, because of deneneracy; for the largest value of |R −R′ + T̄| in the alllowed

{T̄}, we may have some of T̄ (we say degenerated). Then we need to give fractional weight

for such T̄.

To get a list of T̄, we need to collect them satisfying |R − R′ + T̄| < ηFTmax. ηFTmax

should be automatically chosen. However, in the ”bloch” subroutine, this it too primitive

yet(aug2015); we need to specify possible upper limit of ”range of allowed pairs” (RT̄,R′0)

by hand. (RSRNGE in ctrl file). This should be fixed in future. In the current version

iaxs (=sham%iv_a_oiaxs) contains such pair table. It is generated by call hft2rs in call

seneinterp in bndfp.F, I think. We will have to replace ”bloch” with better version. Pair

table must be generated in a simple manner( with the technique of getgv2 (getgv2 is given

in fpgw/gwsrc/getgv2.F and lm7K/subs/pairs.F.

10 Interpolation of the self-energy in the Brillouin

zone

Here we show an interpolation procedure for giving V xc
k at any k, from V xc

k calculated only

at the regular mesh points k(i1, i2, i3). This interpolation is used for the offset-Γ method that

requires W (ω) at {k0i}; to calculate this W (ω), we need eigenfunctions and eigenvalues not

only at the regular mesh points k(i1, i2, i3) but also at k(i1, i2, i3) + k0i. This interpolation is

also useful for plotting energy bands. A key point of the interpolation is that V xc is expanded

in real space in highly localized MTOs as follows.

At the end of step (IV) in Sec.??, we obtain the matrix elements ⟨Ψkn|∆V xc
k |Ψkm⟩ on

the regular mesh points of k, where ∆V xc
k = V xc

k − V xc,LDA
k . Then it is converted to the

representation in the APW and MTO bases as

⟨χk
a |∆V xc

k |χk
b ⟩ =

∑
n,m

(
z−1)∗

an
⟨Ψkn|∆V xc

k |Ψkm⟩z−1
bm,

(82)

where we use the simplified basis index a, which is the index for specifying a basis (RLj for

MTO or G for APW). Thus χk
a denotes the APWs or MTOs in Eq. (1); zna (k is omitted

for simplicity) denotes the coefficients of the eigenfunctions at k, that is, zknRLj and zknG in

Eq. (1) together. This zan is identified as a conversion matrix that connects eigenfunctions

(band index n) and the APW and MTO bases (basis index a).

To obtain real-space representation of ∆V xc, we need a representation expanded in the

basis that consist of the Bloch-summed localized orbitals, which are periodic for k in the BZ.
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However, this is not the case for the APWs in Eq. (82). To overcome this problem, we use

an approximation in which we only take the matrix elements related to MTOs, that is, the

elements ⟨χk
a |∆V xc

k |χk
b ⟩ where a and b specify MTOs. This means that the part of ∆V xc

related to APWs is projected onto the basis of MTOs. This approximation can be reasonable

as long as the main part of ∆V xc can be well expanded in MTOs, although we need numerical

tests to confirm the accuracy as shown in Sec.??. Then we obtain a real-space representation

of ∆V xc expanded in MTOs from the MTO part of ⟨χk
a |∆V xc

k |χk
b ⟩ by Fourier transformation.

Then we can have interpolated ∆V xc at any k by inverse Fourier transformation. Since we use

highly localized MTOs, this interpolation is more stable than the previous one in FP-LMTO-

QSGW [6]. The complicated interpolation procedure given in Sec.II-G in Ref.[6] is no longer

necessary.

To reduce the computational time, we calculate the matrix elements ⟨Ψkn|∆V xc
k |Ψkm⟩ only

up to the states whose eigenvalues are less than EΣ
MAX. Then the high energy parts of the

matrix elements are assumed to be diagonal, where their values are given by a simple average

of calculated diagonal elements.

11 Overview of gwsc and other scripts

The fpgw/exec/gwsc is the main script to run QSGW. After we finish one-body self-consistent

calculation, we run echo 0|lmfgw, resulting small files. See Sec.??. Then we run qg4gw to

generate q+G vectors stored in QGpsi,QGcou,Q0P files, in addition to EPSwklm, which is for

offset-Gamma method ??. Then we run lmfgw-MPI which is to calculate eigenfunctions and

eigenvalues (and some quantities) required for successive main part of QSGW calculation. We

recommend you to examine this first.

For the one-shot GW, we have another script gw lmfh. For dielectric functions (and for

χ0
+−, we have eps*. These are slightly different from gwsc, calling slightly different version of

fortran programs. Wannier function calculations can be done by genMLWF, which not only

generates Wannier functions (tight-binding parameters), but also W and U between Wannier

functions (RPA and cRPA) together. It is in fpgw/Wannier directory.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In Sec. 5, we show a new improvement in the offset-Γ method, which is made in order to

treat the k → 0 divergence of the integrand for the self-energy calculation. This improve-

ment can correctly capture the anisotropy of the screened Coulomb interaction, although the

previous offset-Γ method in FP-LMTO-QSGW [6] can be problematic for treating anisotropic

systems.

In Sec. 10, we explain the interpolation procedure of V xc
k (r, r′). The procedure is simplified

in comparison with that used in FP-LMTO-QSGW.

11.1 xxxxxxxxxxxxxxxxx, bz setting, q+G for phi and for vcoul

qg4gw-mkqg routines. QIBZ,QBZ

qibz nqbz,qibz wibz, nqibze Q0P

iq0pin mode: generate q0p: algorism
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12 Used files

12.1 @MNLA CPHI

m n l ibas

0 1 0 1 1 1

0 2 0 1 2 2

-1 1 1 1 3 3

0 1 1 1 4 3

1 1 1 1 5 3

-1 2 1 1 6 4

0 2 1 1 7 4

1 2 1 1 8 4

-2 1 2 1 9 5

-1 1 2 1 10 5

0 1 2 1 11 5

m is a magnetic quantum number, n is the degree of freedom which means 1 : ϕ, 2 : ϕ̇, and 3 :

local orbital. l is the orbital angular quantum number. The match of orbitals and m number

is shown by job pdos command.The following number is the number of atom. And the next

is the numerating number. It corresponds to the number in GWinput which is the most left

one in the initial conditions.

13 General cautions for developers

gwsc is the main script to perform QSGW. Sec.?? gives an overview. Sec.?? explain main

output files. Sec. ?? explains all i/o files.

At first, note that one-body part lmv7 and fpgw are divided, mainly because of his-

torical reasons. Make procedure is complicated, but automatic by ecalj/InstallAll.* (See.

ecalj/README.md).

Main make system of ecalj is in ecalj/InstallAll.*. As you see in it, makefile for fpgw (GW

part) is located at fpgw/gwsrc/exec/makefile. (memo: apr2015. A little too much complicated

because of duplicated definition of subroutines... We need to simplify variables...).

Cautions are;

� Integrated Make system; ecalj/InstallAll.*

For development, see ecalj/InstallAll.ifort (.gfortran) This let you know how to invoke

make. The ecalj consists of three make procedure. lmv7, fpgw/exec/, fpgw/Wannier.

� Install test

At the end of InstallAll.*, we have make mpi_size=4 all at ecalj/TestInstall. This is an

unique way to run a series of installation tests.

� Machine dependence

For fpgw/exec/, Machine-dependent part is given by a file such as make.inc.gfortran,

which is included in the makefile by the variable PLATFORM. For lmv7, we have

lmv7/MAKEINC/, where we have files which describes machine-dependences.

� CPU time and Memory measurements

At the bottom of makefile, we have a mechanism to insert clock routines in source code.

For example, hsfp0.sc.m.F is converted to time_hsfp0.sc.m.F, and then compiled. Time

measurement is specified directive lines

!TIME0\_number memo

...

!TIME1_number ’LABEL’

Here memo is just comment line, LABEL is a label to identify the block. For example, see

sxcf_fal2.sc.F. The computational time for codes sandwitched by these !TIME0_number

and TIME1_number are measure, and shown at the bottom of console output file lx0 (see

gwsc script).
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See fpgw/exec/makefile to understand how to make binaries for gw part. We can make binaries

by make PLATFORM=ifort LIBMATH=-mkl at the directory.

Other cautions for computer codes;

� We often use modules. A typical example is use m_genallcf_v3,only: ... . For ex-

ample, see hsfp0.sc.m.F, which is for the calculation of W − v. For call genallcf_v3

in it, all data for the use m_genallcf_v3,only: are allocated. Thus we can use these

data after call genallcf_v3 in the code hsfp0.sc.m.F.

� Methods(functions) in modules are keys to learn fpgw/ codes. For example, we have gete-

val(eigenvalues), readcphi(coefficient of eigenfunction for MTO part), readgeig(coefficient

of APW part), get zmel (<phi|phi MPB>). In cases, we have initialization routines such

as readqgcou() defined in readeigen.F. After it is called, we can access to all date in

module m_readqgcou. In principle, this kind of initialization routines must be called at

the top of main programs... But not organized yet. In addition, it may be better to

allocate even scalar in fortran2003. But such new features in fortran2003 is still buggy

(at least in ifort15) as long as I tested.

� A possible mechanism to make things safer is given by a variabl done_genallcf_v3

defined in genallcf_mod.F. Observe how it work in this routine. This ensures that

genallcf_v3 is called only once in a program. Thus variables in m_genallcf_v3 has

uniqueness (But we have no simple way to make write protections for them. You know

a way?) In my opinion, fortran is not suitable to write long computer codes. It is better

to use glue languages such as python or bash, as I did in gwsc...

� nbas is the number of MT sites in the primitive cell. We use ibas for a loop of

do ibas=1,nbas. This is a general rule; another example is iqbz=1,nqibz where nqibz

is the number of irreducible q points.

� getkeyvalue defined in fpgw/gwsrc/keyvalue.F is an universal i/o routine for GWinput.

Its arguments can be one of types among ”logical, int, real, int array, real array”. Do

grep ’call getkeyvalue’ for fpgw/*/*.F to find out how to use it.

� Recently the definition of POSCAR of VASP changes. Now its CARTESIAN case is

essentially the same as the standard input of ctrl file. We changed structuretools on

Feb.12. 2016, following the new definition.

14 Coding rule and Developer’s memo

Here is my current rule for coding. But ecalj codes alreay have long history, thus not unified

in a manner. Here is my recommendations. We don’t like dirty code, but simultaneously, not

spend too much time for cleaning up computer code, but not too dirty logic.

� fpgw/ directory:

main routines are in main/*.m.F

subroutines are in gwsrc/

makefile, shell scripts are in exec/

Wannier routines (main and sub) are in Wannier/

We use fixed format f90 (or more in future).

� How to add new fortran file ? (dependency checker)

(for the case fo fpgw/ code. Essentially similar for lm7K/ part).

Because of modules of f90, we need moduledependes.inc

which describe dependency of source files given in makefile.

We have a system automatically making it by ’make init’.

Steps are:

1.Make a *.F file in gwsrc/ or main/ or Wannier/
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2.Add *.o in fpgw/exec/makefile

3.Run ’make init’ at fpgw/exec (or at fpgw/Wannier/ or )

This check dependecny and moduledependes.inc,

which is included when you run make.

You may need to removed ../*/*.mod and/or ../*/*.o files if some erroroccurs.

4. make

moduledepends.inc is automatically generated by TOOLS/checkmodule (python code; I

sometimes need to do make init). But TOOLS/checkmodule is not well written.

� TIME directive and makefile

We have

!TIME_00010 Q0P

!TIME_00010 ’Q0P’

in some files such as ../main/hx0fp0.sc.m.F.

How many times and how many clock time used

is reported at the end of console output.

This reports computational time at the end of output from each node.

(see STDOUT/stdout.{rankID=0000}.* files) when you run gwsc.

At the bottom of makefile, we have conversion from

*.F to time*.F.

For exmple, hx0fp0.sc.F is converted

to time_hx0fp0.sc.F and compiled.

Here we replace directions "!TIME0" and "!TIME1..."

by a timing-measurement routine by awk.

Thus, be careful.

When you compile hx0fp0.sc.F with -g

option, it shows the error stop (such as segmentation error)

in the line number of time_hx0fp0.sc.F

If you have make error such as

> ERROR: inconsistent key, key= __x0kf_sym

, it means error when the conversion find syntax error.

You can see

>make

gawk -f script/addtime.awk -vSTART=1 ../main/hx0fp0.sc.m.F | gawk -f script/then_separate.awk | gawk -f script/add_alloclist.awk > ../main/time_hx0fp0.sc.m.F

...

This shows fpgw/exec/script/addtime.awk is used for the conversion.

� MPI is not so efficient yet.

We like to make simple MPI procedure, not nested.

For this purpose, it may be better to divide matrix elements generator

and core of GW part.

When you run gwsc or so,

STDOUT/stdout.0000.hx0fp0_sc

contains output of hx0fp0_sc due to rank=0000.

� double path formalism in lmf (a problem to be cleaned up)

For eigenvalues, we show twice a iteration.

This is historical reason.

We will improve it.

� emacs(vm) skills
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multi window mode, compare files,

emacs git mode

emacs ediff mode

emacs etags

git rebase -i ==> See http://liginc.co.jp/web/tool/79390

gitk --all

python

� Doxygen: At ecalj/fpgw, run doxygen. Because we have Doxyfile there, we can have

doxygen html and pdfs. Doxygen is not so good but not so bad for fortran. We will use

doxygen for a while. But not believe doxygen too much.

module at the beginning of x0kf_v4h.F.

1. Not allow comment line in declearation of subrouitne.

2."double precision" is not allowed.

3. comments lines outside of subroutine.

4. To overliad doxygen bug, dummy declear needed.

integer:: dummy4doxygen at the begining.

� callcaller tree generator

We can make a table callcaller.dat by

>make dep

at fpgw/exec/ and lm7K/ (may take one minute).

Not believe it so much...

Need to check it in other manner.

� Test system is at ecalj/TestInstall/. We can say test system is very important. We

usually include new bug when you add new functionarity in a code. Test system is very

critical to develop ocmputer programs quickly. Current test system is a little complicated;

but we will use it for a while.

At ecalj/TestInstall/

We have

---------------------------------------

./Makefile

./Makefile.inc (this is called from test directories as si_gwsc).

./si_gwsc/Makefile and data for test

./crn/Makefile and data for test.

---------------------------------------

To add a test,

we keep input and output files in xxx/ directory,

and make Makefile as in the case of si_gwsc/.

In addition, you have to add the name of test in Makefile.

\item

\begin{verbatim}

Line length for fortran; Add .emacs the following three lines.

(add-hook ’fortran-mode-hook

’(lambda ()

(setq fortran-line-length 132)))

� Use fixed format of fortran. Use -132 line option. Give a line number for long do loop

(not do end do)). And respect the do loop number (not delete line numbers without a

reason.)

� We use

integer::

real(8)::

complex(8)::
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� Supplemental documents embedded in codes should be very minimum. We have to

prepare a document separately. The document(this document) explains the formulation

and algorithm. Ideal code should have no comment lines; program itself should be a

document corresponding to the document of formalism. (we may explain data structures

in this document, but it should be very minimum).

14.1 module coding

(this section is by S.H.Ryee, a little modified). We will develop a big code with full use of

modules. It is convenient to manage the code. Advantages are;

� We can easily understand, handle and modify the code without making complicated

problems.

� We don’t have to be careful about the order of data.

� We can easily divide a job for cooperation.

Therefore, developers are strongly recommended to make codes with modules. However, we

have to be careful about how to use the modules.

A small example is contained in ecalj/TOOLS/ModuleCodingSample/. One can see a file

named m_test.F. To execute the m_test.F, type in

gfortran m_test.F -I. -J. -g -ffixed-line-length-132

in your command line. This code is designed to read and print the file named sample.dat

contained in the same directory. sample.dat is written as follows:

1 Ndup 3 4 8

2 Nddn 5 6 7 8

3 Cu 2 3 4 123 556 45

We would like to emphasize several points contained in the m_test.F as an example.

Developers are urged to follow these points.

� Use protected and private option when delcaring variables in a module to avoid the

same variable names being used outside of the module. :

module m_readline

integer,protected:: nclass,nbasclassMax

integer,protected,allocatable:: cbas(:,:),nbasclass(:)

character(20),protected,allocatable:: classname(:)

integer,parameter,private::maxdat=1024

contains

subroutine s_readclass()

...

� Use labels for loops to avoid confusion (for long loop). :

...

do

read(ifix,"(a)",end=999) aaa

iline=iline+1

end do

999 continue

nclass=iline

allocate(iclassin(nclass),cbastemp(maxdat,nclass),nbasclass(nclass),classname(nclass))

rewind(ifix)

cbastemp=-999

do 1001, iclass=1,nclass
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read(ifix,"(a)") aaa

read(aaa,*,end=1201) iclassin(iclass),a,(cbastemp(i,iclass),i=1,maxdat)

1201 continue

if(iclassin(iclass)/=iclass) call rx(’iclass is not i’)

classname(iclass)=trim(a)

do i=1,maxdat

if(cbastemp(i,iclass)==-999) then

nbasclass(iclass)=i-1

exit

endif

enddo

1001 continue

...

The module can be used in the main program by using use command:

...

program test

use m_readline,only: s_readclass, nbasclass, nclass, cbas, classname, nbasclassmax

integer:: i,ix,iclass

call s_readclass()

write(*,*) ’=== Read lines nclass=’,nclass

do iclass=1,nclass

write(*,*)’output:’,iclass,trim(classname(iclass)),cbas(1:nbasclass(iclass),iclass)

enddo

end

� Memo for usagee of modules.

In the PMT part (one-body part)) ecalj/lm7K/, we use strucrue. But no structures in

the GW part ecalj/fpgw part. I recommned to use modules.

Module names are m_foobar. Use ’only’ option when you use a module. Use ’protected’

for all variables in module; then these can be written only by the subroutine in the

moudle.

An example is

module m_get_bzdata1 in getbzdata1.F

This is related to reading BZDATA file.

All public data defined at the head part of this module are output.

These are set by a call as

"call getbzdata(... arguments list ...)",

where arguments list are all inputs.

Thus we can have all the public data, suddenly appear

right after "call getbzdata".

To make the data flow clear as possible, we have to declear

"only" option when we use a module.

Here is an example of hx0fp0.sc.m.F, which uses a modle m_genallcf_v3.

use m_genallcf_v3,only: genallcf_v3,

& nclass,natom,nspin,nl,nn,ngrp,

& nlmto,nlnmx, nctot,niw,nw_input=>nw,

& alat,ef, diw,dw,delta,deltaw,esmr,symgrp,clabl,iclass,

& invg, il, in, im, nlnm,

& plat, pos, ecore, symgg

---------

In the main routine, we call genallcf_v3.

Then all following variables are set.
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� Module example.

To get the matrix element: zmel = <E_nu phi|phi>,

which is the parts of numerator of equations in the steps of GW calculaitons,

we use "readeigen mehanism". Let me explain this.

At first, we call

call init_readeigen(ginv,nspin,nband,mrece)!EVU EVD are read in

call init_readeigen2(mrecb,nlmto,mrecg)

. These are needed for initialization.

Then we do

call get_zmelt2(exchange, ... (matrix elements generator)

in a subroutine x0kf_v4hz (which is called from main routine hx0fp0.m.F).

Then we have the matrix elements zmeltt after this call.

Because of historical reason exchange=T,F gives different names of

zmel, zmelt or zmeltt, which are suitable exchange calculation or

correlaiton calculaiton.

NOTE:

get_zmelt2 internally call function readeigen (to get eigenfunctions).
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15 Phonon project

Key papers of phonon theories are [16] [17] [18] [19]. Pratical implementations are in [7] [20].

1. The polarization function

Π̄ = Π
√
v

1

1−
√
vΠ

√
v

√
vΠ (83)

are calculated on the regular k mesh points (expect k = 0), and on the offset-Gamma

points (=Q0P points instead of k = 0). Expanded in the Coulomb-diagonalized MPB

set {|Ek
ν ⟩} as ⟨Ek

µ |Π̄k|Ek
ν ⟩. For phonon calculation, we only need to know quantities at

ω = 0.

2. We reorganize the results of ⟨Ek
µ |Π̄k|Ek

ν ⟩ at Q0P. In is represented in the expansion of

k near k = 0. In other words, Q0P-points method (=offset-Gamma method) is just in

order to get the numerical derivative as the kdotp method.

See Eq.36 in [7], in which we have L(ω) matrix. It is given in Eq.34 in [20].

3. Bare Coulomb between ions. Calculate ZRZR′
∂2vk(Rα−R′

β)

∂Rα∂R′
β

.

4. Calculate ⟨ ∂v
k(r−R)
∂Rα

|Ek
ν (r)⟩ ≡

∫
d3r ∂vk(r−R)

∂Rα
Ek

ν (r). Note that Ek
ν=1(r) corresponds to

exp(ikr).

5. We have dynamical matrix

Ck
αβ =

∂2Wk(Rα −R′
β)

∂Rα∂R′
β

(84)

on regular mesh points. At k = 0, we have an expansion. In stead of C, we treat C̄

which satisfy translational symmetry.

6. We calculate dynamical matrix in the form C̄ = C̄N + C̄NA, where C̄N and C̄NA are

analytic and non-analytic parts, respectively.

7. Non-analytic part C̄NA are specified by the Born-effective charge and the static dielectic

tensor (it is in the denominator). C̄NA is given in the Bloch sum (the BZ periodicity).

8. We have analytic part C̄N Sum rule correction (sum of born effective charge, translational

symmetry) may be needed.

9. Interpolarion in the whole BZ (non-analytic part and analytic part).

10. Then we can calculate phonos.

11. Calculate electron phonon coupling in the same manner.

12. Mobility calculation and so on.
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16 Magnon project

Generalized Lindhard polarization function (or Kernel) is defined as (c.f.Eq. (20));

−Kαβ = (r1, r2; r3, r4;ω) = −iGα(1, 3)Gβ(4, 2) =

=

BZ∑
k

occ∑
n

BZ∑
k′

unocc∑
n′

Ψ∗
knβ(r2)Ψknβ(r4)Ψk′n′α(r1)Ψ

∗
k′n′α(r3)

ω − (εk′n′α − εknβ) + iδ

+

BZ∑
k

unocc∑
n

BZ∑
k′

occ∑
n′

Ψ∗
knβ(r2)Ψknβ(r4)Ψk′n′α(r1)Ψ

∗
k′n′α(r3)

−ω − (εknβ − εk′n′α) + iδ
. (85)

(— NEED diagram FIGURE HERE for Kαβ —)

Here t = t1 = t2 and t′ = t3 = t4. To understand this, note the correspondence between

real-time and ω space;

1

ω − ε+ iδ
↔ iθ(t− t′) exp(−iε(t− t′)) (86)

1

−ω − ε+ iδ
↔ iθ(t′ − t) exp(−iε(t′ − t)). (87)

It is easy to make the product Gα(1, 3)Gβ(4, 2) in real space and real time represantaiton.

This Eq. (88) is a general time-ordered linear response function for a non-interacting system.

Note that this is reduced to be Eq. (20) for r1 = r2 and r3 = r4. This is the same as Kαβ in

Eq.(15) in Ref.[21] by Sasioglu. By the Fourier transformation of Eq. (88), we have

−Kαβ(q, ω) =

BZ∑
k

occ∑
n

unocc∑
n′

Ψ∗
knβ(r2)Ψknβ(r4)Ψk+qn′α(r1)Ψ

∗
k+qn′α(r3)

ω − (εk+qn′α − εknβ) + iδ

+

BZ∑
k

unocc∑
n

occ∑
n′

Ψ∗
knβ(r2)Ψknβ(r4)Ψk+qn′α(r1)Ψ

∗
k+qn′α(r3)

−ω − (εknβ − εk+qn′α) + iδ
. (88)

When we expand eigenfunctions by atom-centered localized functions as

Ψk
kn(r) =

∑
Ri

aαRiw
k
Riα(r), (correct? Notation check) (89)

in the restricted Model Hilbert space,Kαβ is represented asKαβ
Rij,R′kl(q, ω), whereRi,Rj,R

′k,R′l

are orbital indexes in the unit cell. As we have W = ⟨RiRj|W |R′kR′l⟩ in the mRPA method

(or cRPA), we can calculate χ+− = K/(1−WK) in the model space. (need detailed equa-

tion with indexes!)

Spectrum funciton and Hilbert transformation

Imaginary part of Kαβ(q, ω) is obtained just by replacement 1/(ω− ϵ+ iδ) → πδ(ω− ϵ). That
is, it is given as

Im[K] =
∑
k

∑
n

∑
n′

M(k, n, β;k+ q, n′, α)δ(ω − (εk+qn′α − εknβ)), (90)

where we define the matrix element M = Ψ∗
knβ(r2)Ψknβ(r4)Ψk+qn′α(r1)Ψ

∗
k+qn′α(r3). By the

replacement δ(ω− ε) → 1/(ω− ε+ iδ) by the Hilbert transformation, we can recover real part

from the Im[K]. ω can be positive or negative; positive is for spin excitation β → α, negative

is for α→ β.

In the tetrahedron method of ecalj, we can calculate Eq. (90) as follows;

Im[K]([ωi, ωi+1]) =
∑
k

∑
n

∑
n′

M(k, n, β;k+ q, n′, α)Wtet(i,k, n,k+ q, n′), (91)

where
∑

k is for discritized k points set by ecalj. Im[K]([ωi, ωi+1]) means the imaginary part

(weight) in the interval [ωi, ωi+1].

I think the t2g-eg separated motion is one of the interesting theme. (need to write a little

more...)

Test of magnon calculation (transversal spin fluctuation)

Look into ecalj/MATERIALS/Fe_magnon and Ni_magnon. Run a script. We have results of spin
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fluctuations.

16.1 How to develop your code? → Hacking hx0fp0.m.F

For code development of magnon spin susceptibility, it will be easy to hack hx0fp0.m.F (See

cleaned up version after Nov28,2019). To invoke hx0fp0, we supply an integer swith ixc. In

principle, it has some modes, (type hx0fp0 without supplying integer). It shows three normal

modes (screened Coulomb interaction on real and imag axis for all k point), and three eps

modes on real axis for k point given in Q0P (supplied in GWinput as <QforEPS>,<QforEPSL>).

Please examine epsmode ixc=222, this is for eps_lmfh_chipm, which is for spin suceptibility

⟨exp iqrχ0
+−| exp(ir)⟩. (For dielectric constant see ixc=202 mode).

� Main idea of hacking is “Replace eigenvalues and eigenfuncitons” for your purpose. (For

examples, we use the Wannier-function-based eigenfunctions). You can read q points

and crystal strucrure settings in hx0fp0.

� Fermi energy. You may have to supply it via your own readefermi.

� readeval in hx0fp0.m.F should be replaced your own eigenvalue generators. nband (read

from hbe.d) need to be modified.

� No core setting is needed (but this is standard in usual GWinput).

� Matrix elements must be replaced. It is in zmel in x0kf_v4h. It is generated at

call get_zmelt2, and used in the main loop do 25 in x0kf_v4h.F. Note nmbas is prop-

erly supplied.

� To hack it, skip eibz mode since it is confusing (use eibzmode=F), you may or may not

recover symmetry afterwards.

16.2 Data structure of the tetrahedron method in ecalj

At first, you can consider only the mtet=F case. To make it safer, check mtet=F (if it is True,

error exit by ’call rx’). In m_tetw.F we have gettetwt called from hx0fp0.m.F as

call gettetwt(q,iq,is,isf,nwgt(:,iq),frhis,nwhis,npm,

i qbas,ginv, ef, nqibz, nband,ekxx1,ekxx2, nctot,ecore,

i nqbz,qbz,nqbzw,qbzw, ntetf,idtetf,ib1bz,

i nbmx,ebmx,mtet,eibzmode) !nov2016

. All arguments are input. This returns tetrahedron weight Wtet(i,k, n,k + q, n′) in the

common data area of m_tetw.

input parameters

� q: q vector and index of q vector

� iq: unused for mtet=F. It may be safer to set -9999 for safe.

� is,isf: α and β

� Eigenvalues are supplied by

do kx = 1, nqbz

call readeval(qbz(:,kx), is, ekxx1(1:nband, kx) )

call readeval(q+qbz(:,kx), isf, ekxx2(1:nband, kx) )

enddo

at hx0fp0.m.F

� nwgt: This is for EIBZ mode. We skip microtetrahedrons when all of nwgt(kx0:kx3) are

zero (here kx0,kx1,kx2,kx3 are four corners of k vectors). Thus we calculate tetrahedron

weigh only for k points for nwgw(k)=1. In EIBZ mode, we will symmetrize finally obtained

correct Kαβ . (takao: I like to check this code again...)

Anyway, you can skip EIBZ, by eibzmode=F. Then nwgt=1.

� frhis(1:1+nwhis),nwhis: Histogram bins [ωi, ωi+1] are [frhis(i),frhis(i+1)]. We

set frhis(1)=0d0. See m_freq.F. We calculate values on Kα,β(ω) where ω is specified

by freq_r (this is center of the bins. See freq_r file.)
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� If npm=2, we calculate negative frequency part. For negative ω, Histogram bins [ωi, ωi+1]

are [-frhis(i),-frhis(i+1)]. (Opposite spin flip excitation to positive energy.)

� We can set ncore=0 (use genallcf_v3).

� For BZ data (use m_read_bzdata), you can set them by call read_bzdata.

� symops(3,3,1:ngrp) is the rotation part of space group operation. SYMOPS file is

created by echo 0|lmfgw, and read by qg4gw. Then symops information is written into

HAMindex file.

Output data sets are real(8),allocatable :: whw(:)

integer,allocatable:: ihw(:,:,:),nhw(:,:,:),jhw(:,:,:),ibjb(:,:,:,:)

integer:: nbnbx,nhwtot

integer,allocatable :: n1b(:,:,:),n2b(:,:,:),nbnb(:,:)

These are used as in x0kf_v4h.F. Look into it. Here is a simplified version for showing how

to use these data set.

do 25 jpm = 1, npm !

do 25 ibib = 1, nbnb(k,jpm)

n1b(ibib,k,jpm) !band index for k

n2b(ibib,k,jpm) !band index for q+k

it = n1b(ibib,k,jpm) ! index for n for q

itp = 1+ n2b(ibib,k,jpm)-n2bminimum ! index for n’ for q+k

... M(:,:) is calculated here ...

call get_zmelt2 --> Get zmel=<MPB psi_k|psi_{k+q}>

zmel=dconjg(zmel) ! --> zmel= <psi_{k+q}| psi_k MPB_q>

M(igb1,igb2) = dconjg(zmel(igb1,it,itp))* zmel(igb2, it,itp)

Here M = <M_igb1 psi_it | psi_itp> < psi_itp | psi_it M_ibg2 >

do iw = ihw(ibib,k,jpm),ihw(ibib,k,jpm)+nhw(ibib,k,jpm)-1

imagweight = whw(jhw(ibib,k,jpm)+iw-ihw(ibib,k,jpm))

Kmatrix(:,:,iw,jpm) = Kmatrix(:,:,iw,jpm) + M(:,:)*imagweight

enddo

25 continue

We do
∑

n

∑
n′ in Eq. (90) as follows; before this do 25, we set k,k + q. k is index for k

vector. n2bminimum is introduced (this is for unoccupied states for npm=1. Wtet is given as

imagweight, iw is the index for the histogram bin.

16.3 Requirement of the spin symmetic Hamiltonian

(this idea is moved to another text modelSX.pdf.)

I think we can set up a model spin-symmetric screened exchange energy, which is consistent

with the linear response theory. Thus we have two ways, one is calculate Heisenberg’s J by

the difference of total energy. The other is by the linear response theory as in the magnon

project.

17 Usual tetrahedron method

The standard tetrahedron method is used for determining the Fermi energy and so on in

ecalj/lm7K/*. Probably, easiest way to know its usage is in the PDOS mode (try job_pdos),

which is calculated in lmf-MPIK, mainly in ecalj/lm7K/fp/bndfp.F.

In bndfp.F, search --- Loop over tetrahedra ---, There the itet loop is for the tetrahe-

dron sum. See

call slinz(wt,eigen,eminp+ef0,emaxp+ef0,pdosalla(1,isp,ichan,ibas),ndos)

in the loop. This is to accumelate pdosalla(1:ndos,....). where energy window [eminpu+ef0:emaxp+ef0]

is divided by ndos. wt is the matrix element times weight for the tetrahedron (usually no depen-

dence for tetrahedron). eigen(1:4) is the four corner of eigenvalues given as eigen(1:4) = evlall(ib,isp,idtete(1:4,itet))

You can see the tetrahedron is originally generated by the subroutine tetirr.
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18 Wannier project

One of my idea is in newwannier.pdf (request to me).

1. Non orthgonalized basis

2. Acurately remove double counting.

3. Limitation of FLEX, TPSC

19 Paralellization project
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Appendix (touched at 2022jan)

A Harris-Foulkner energy and Kohn-Sham energy

In LDA/GGA, on the way to self-consistency, input density and output density are not the

same (not self-consitent). Thus we define two total energy for given input density nin, the

Harris-Foulkner energy EHarris and the Hohenberg-Kohn energy EHoKohn

EHarris = Ecore
k + EB − Ves[n

Zc + nin,Ra] · nin − Vxc[n
c + nin] · nin

+Ees[n
Zc + nin,Ra] + Exc[n

c + nin], (92)

EHoKohn = Ecore
k + EB − Ves[n

Zc + nin,Ra] · nout − Vxc[n
c + nin] · nout

+Ees[n
Zc + nout,Ra] + Exc[n

c + nout], (93)

EB =

occupied∑
p

αi∗
p ⟨Fi|H in|Fj⟩αj

p, (94)

See Eqs.(B.1),(B.2)in Ref.[20]. These are slightly wrong because Eq.(31) for Exc is wrong; it is

not the functional of total charges (inlcuding nucleus) nZc+nin, but the total electron density

nc + nin. Based on the 3-component formalism in Ref.[20], Ees have explicit dependendence

on atomic positions Ra, but Exc does not. The dependence is via the mutipole transforma-

tion in Eq.(14). Search ham_ehf,ham_ehk in ecalj/lm7K/fp/bndfp.F. The EHarris is given at

call m_mkehkf_etot1(sev, eharris), while EHoKohn is given by

call m_mkehkf_etot2(sev,sumtv, eksham). EHarris and EHoKohn are shown in save.* file.

The band energy EB is stored in the module variable in bndfp.F; this is shown as sev in

save.*. The kinetic energy Ecore
k +EB−Ves[n

Zc+nin,Ra] ·nout−Vxc[n
c+nin] ·nout contained

in the EHoKohn is calculated as sumtv in bndfp.F-mkekin.F

In LDA/GGA calculations by lmf-MPIK, save.* file contains a line per iteration.

c ehf(eV)=-15730.0982239 ehk(eV)=-15730.0982222 sev(eV)=-15.7737393

shows EHarris =-15730.0982239 eV and EHoKohn =-15730.0982222 eV, as well as the valence

band energy = −15.7737393 eV. In principle, EHarris and EHoKohn should be exactly the

same when converged; the difference is the numerical error. c at the begining of line means

“converged”. h means the 1st iteration from atm.* file (superposition of atomic density).

B Block inversion used for dielectric functions and

downfolding

See Christph’s and Pick’s paper(
P Q

R S

)(
W −WQS−1

−S−1RW S−1 + S−1RWQS−1

)
=

(
1 0

0 1

)
, (95)

where P and S are square matrices, and

W = (P −QS−1R)−1. (96)

We refer X = −WQS−1 and Y = −S−1RW .

Proof:

(1, 1) component = PW −QS−1RW = (P −QS−1R)W = 1, (97)

(1, 2) component = −PWQS−1 +QS−1 +QS−1RWQS−1

= (−PW + 1 +QS−1RW )QS−1 = (−(P −QS−1R)W + 1)QS−1 = 0 (98)

(2, 1) component = RW − SS−1RW = 0, (99)

(2, 2) component = −RWQS−1 + SS−1 + SS−1RWQS−1 = 1 (100)

(I think this proof is a little too complicated).
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C Downfolding

Downfolding is a general concept which often appears in physics of varieties of contexts. It is

based on the Block inversion Eq. (95). This appears for the inversion of one-body problem, or

divide the Fock space for many-body theory. (divide the Fock space into two Hilbert spaces;

one-particle excited states and states with more than one-particles).

For exaple, the Green function is the inversion of the matrix ω − H, where H is divided

into to(
H11 H12

H21 H22

)
. (101)

If we have H12 = H21 = 0, we have G0
11 = 1/(ω−H11) as the main part of Green function.

This is completely separated from from the residual part G0
22 = 1/(ω −H22).

When H12 and H21 are non-zero, we have to take into their effect by perturbation, or by

the block inversion of Eq. (95). Then we have(
G11 G12

G21 G22

)
=

(
G11 −G11H12G

0
22

−G0
22H21G11 G0

22 +G0
22H21G11H12G

0
22

)
, (102)

where W in Eq. (95) is G11. Note that the ω dependence is in G0
11 and G0

22. Here G11 given

as (See Eq. (96)).

G11 =
1

ω −H11 −H12G0
22H21

. (103)

Then H12G
0
22H21 is identified as the self-energy.

There are possible cases about how to choose Hilbert space Ω1 and Ω2 corresponding to

the division Eq. (101).

� In the one-body problem, for example, we take Ω1 as low energy part and Ω2 as high

energy part. or 3d parts and others.

� In a case of many-body theory, Ω1 is the one-particle Fock space. Then G11 is the

one-body propagetor, and G22 is many-body (two- and more particles-) propagetor.

� We may take Ω1 as the model space, Ω2 as the residual space. Then we make like to

identify H11 as the Hubbard Hamiltonian. However, it is not so simple since H11 contains

screening effect due to the degree of freedom of Ω2. We have to consider a little more

complicated downfolding procedure.

Warn: not be confused with the division of many-body Hamiltonian H into H0 + (H −H0)

for perturbation.

C.1 Causality and analytic property

The equation (ω − H)G(ω) = 1 is not well defined. We need to consider original equation

of motion in real time as (i ∂
∂t

− H)G(t − t′) = δ(t − t′) where we have to take into account

the bondary condition of retarded response responding to the source term of impulse at the

right-hand side.

Causality means ”cause gives result”. This is represented by the step function, for example,

as θ(t− t′) exp(iω0(t− t′)), whose FT gives 1/(ω− ω0 − iδ). Thus the position of pole (upper

or lower plane) is important to determine the direction of time (real time representation).

Sum rule is related to the causality but a little different. For example, sum rule for

Imaginary part of G11 is controlled only by the beheavior G11(ω) at |ω| → ∞. Thus, as long

as H12G
0
22H21 → 0 for |ω| → ∞, the sum rule is satisfied.

D Spherical Harmonics and Real harmonics in ecalj

In ecalj, fortran codes are mainly based on the real harmonics ylm(r̂), instead of the usual

sperical (complex) harmonics Ylm(r̂). The coefficients of eigenfunctions and so on are ordered

as, e.g. (m = −2,m = −1,m = 0,m = 1,m = 2) for l = 2. For example, LMXA=4, we have

(4+1)**2=25 harmonics, ordered as y00, y−11, y01, y11, y−22, y−12, ..., y22, y−33, ...y33, y−44, ...y44.
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ylm(r̂) is defined from Ylm(r̂). Here r̂ = (θ, ϕ).

yl0(r̂) ≡ Yl0(r̂). (104)

ylm(r̂) ≡ 1√
2
[(−1)mYlm(r̂) + Yl−m(r̂)]. (105)

yl−m(r̂) ≡ 1√
2i
[(−1)mYlm(r̂)− Yl−m(r̂)]. (106)

, where m > 0. Equivalently,

Yl0(r̂) ≡ yl0(r̂). (107)

Ylm(r̂) ≡ (−1)m√
2

[ylm(r̂) + iyl−m(r̂)]. (108)

Yl−m(r̂) ≡ 1√
2
[ylm(r̂)− iyl−m(r̂)]. (109)

.

—————————————————-

The definition of Ylm(r̂) are

Ylm(θ, ϕ) = (−1)m
[
(2l + 1)(l −m)!

4π(l +m)!

] 1
2

Pm
l (cos(θ))eimϕ, (110)

Pm
l (x) =

(1− x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l (111)

.

We take these definitions from

(1)A.R.Edmonds, Angular Momentum in quantum Mechanics, Princeton University Press,

1960,

(2)M.E.Rose, Elementary Theory of angular Momentum, John Wiley & Sons, INC. 1957,

if necessary. The definition of spherical hermonics are the same in these books.

E Wannier function and SOC

At 2022-5-25, we add the SOC matrix calculation for the Wannier function.

E.1 Generate the Wannier functions by projection

It might be better to generate Wannier functions by projection. This means no optimiza-

tion steps in the maximally localized Wannier procedure. To do the projection, we set

wan_maxit_1st 0, wan_maxit_2nd 0 in GWinput. One of the big advantage without opti-

mization is that the obtained Wannier functions can keep the crystal symmetry.

We select orbitals at the section <worb> in GWinput. Corresponding to chosen numbers (if

4f is chosen, we have 10 11 ... 16.), we have initial functions Glσ(r)ylm(r̂). Here we use real

spherical functions ylm(r̂) given in Eq. (106). Outside of MuffinTin(MT), Glσ(r) is given by

the Gaussian as Glσ(r) =
1
N

exp(−(r/r0)
2) where r0 is fixed to be 2.0 a.u. Search r0g = 2d0

in hpsig_MPI.F. Here we omit atom index for simplicity. Within MT, Glσ(r) is given by the

linear combination of ϕ and ϕ̇ as c1ϕ(r)+ c2ϕ̇(r). Note that ϕ(r) and ϕ̇(r) are the solutions of

the radial Schrödinger equation. Coefficients c1 and c2 are determined so as to match with the

Gaussian for value and slope at the MT boundary, see subroutine getc1c2 in hpsig_MPI.F.

Note this can be spin-dependent (if --phispinsym is used, we can use spin-independent Gl).

Then we can calculate the projection matrix ⟨ψknσ|Glσ(r)ylm(r̂)⟩. Here bands ψknσ are

in the outer window specified by wan_out_emax and wan_out_emin. (we assume the case that

eigenfunctions are spin diagonal here). The projection is calculated in hpsig_MPI.F. (minor

point: ⟨ψkn(tail part in MT)|Glσ(r)ylm(r̂)⟩ is neglected.)
With the projection, we can make projected Wannier functions as

Wlmσ(r) =
∑
kn

|ψknσ(r)⟩⟨ψknσ|Glσ(r)ylm(r̂)⟩ (112)
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Pay attention to the width of the energy window (outer window). If it is very wide,
∑

kn |ψkn(r)⟩⟨ψkn|
becomes identical matrix; thus no character of eigenfunctions remains. If narrow enough (e.g.

only seven bands for 4f), the Wannier completely include the character of the eigenfunctions;

but with the penalty of longer range. The Wannier functions are not uniquely determined.

So it might be useless to say something too much. ”Maximally localized” is not necessarily so

meaningful (or has limited meanings).

FYI: Recall two step optimization procedure of Maximally localized Wannier functions

(MLWF). The 1st step is picking up seven degree of freedom for all q points (4f case). The

2nd step is the unitary transformation within the degree of freedom. Its principle is the

minimization of Wannier spread. Cons are (1)Crystal symmetry might be broken, (2) Tail of

Wannier can be oscillating. In addition, we have some ambiguity; if outer window become

wider and wider, MLWF can be more and more localized.

E.2 SOC matrix for the Wannier functions

We calculate SOC matrix hammsoc ⟨Fkiσ|HSOC|Fkjσ⟩ in sugw.F

(lmf-MPIK --jobgw --job --socmatrix mode around the end of genMLFhso) for all k points

in the Brillowin zone. Here Fkiσ means the basis functions in the PMT method. Eigenfunction

is given as

Ψknσ =
∑
i

Fkiσα
k(i, n, σ). (113)

Thus the required SOC matrix ⟨Wlmσ(r)|HSOC|Wlm′σ′(r)⟩ (hammso in hsocmat.F) is cal-

cualted in hsocmat from

1. αk(i, n, σ) (evec(1:nz,iband,iqbz,isp) in hsocmat.F)

2. ⟨Fkiσ|HSOC|Fkjσ′⟩ (hso(1:nz,1:nz,iqbz,ispc) in hsocmat.F. ispc=3 means spin off-

diagonal)

3. ⟨ψknσ|Glσ(r)ylm(r̂)⟩ (dnk(iband,iwf,iqbz,isp) in hsocmat.F)

See hsocmat.F. We have evecw=matmul(evec,dnk). From hammso, we calculate the trace of the

square of HSOC as Tr(H2
SOC) in the space spanned by the Wannier functions. By construction

the trace is not dependent on ylm or on Ylm because projected fourteen Wannier functions

(when 4f) spans the same Hilbert space. The trace is equilannt to the sum of square of

eigenvalues of HSOC.

Tr(H2
SOC), as well as ⟨Wlmσ|HSOC|Wlm′σ′⟩, can be Wannier dependent because the Wan-

nier is not unique. But we expect the dependence is not so large.

Important check point to evaluate the size of SOC is whether we can reproduce the SOC

splitting in the original bands (not the bands of the 14-space model but the bands of full

QSGW).

F Crystal symmetry for GW calculation

space group operation (space group rotation):

In the preparation state of GW calculation, we have 3x3 matrices symops(3,3,ig),ig=1,ngrp

for point group part of the space group operations. It is written in call m_hamindex_init,m_hamindex.F:L128)

at lmv7.F (lmfgw-MPIK job=0 mode). For example, in the case of GaAs, it shows 24 matrices

in it.

In GWmain routines such as hsfp0.sc.m.F, we do call genallcf_v3. This set symgg (=symops)

in the module m_genallcf_v3 as well as invg pointing the . In the module m_zmel.F, we do

call mptauof. This set all required symmetry operations (find accompanied translation vec-

tor and atom-site mapping information) from point group operations. It gives informations of

space group symmetry (which atom is mapped to which atom, and so on). See document at

the begining of subroutine mptauof.

In lmv7.F(main routine), we have m_hamindex called for lmfgw mode=0. This gives a file

Hamindex, containing Hamindex.
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The space group symmetry operation can be checked by “lmchk” in advance. But be

careful. It also includes inversion symmetry, which means |ψ−k(r)|2 = |ψk(r)|2 (this is because

of time-reversal symmetry as for real local V (r) (DFT case)). Need attention as for LDA+U

case of orbital moments appears (no time-reversal case).

The given crystal symmetry can be controlled by SYMGRP category in GWinput. You can

supply generators of space group (see explanation in GWinput), or set find. If it is find, we

assume electronic structure has the symmetry of crystal structure. Note that symmetry of

electronic structure can be lower than the crystal symmetry. For example, NiO is deformed

along (111) direction in realitiy, but we may like to use structure without such deformation

for calcualtions. In such a case, we may need to supply generators for lower symmetry.

AF symmetry:

Recently, we add a new option SYMGRP_AF. We have to set

/home/usr2/h70252a/ecaljAFtest/NdTEST

~/SWJ/Nd2CuO4

...

ATOM=Ndup POS= 0.0000 {a}/2 {c}/2-{znd}*{c} AF=1

ATOM=Nddn POS= {a}/2 0.0000 {znd}*{c} AF=-1

SYMGRPAF r2x

SYMGRP r4z::(-1/2,1/2,0)

...

Here, AF=1,AF=-1 give AF pairs. SYMGRP is to keep z axis. SYMGRPAF is an antiferro

magnetic symmetry operation (we add r2x+spin inversion), then the ATOM AF=1 is mapped

to AF=-1. Ask to T.Kotani as for AF symmetry setting, because it is relatively new.

G IBZ and EIBZ scheme

We include EIBZ procedure given in III.G. in Ref.[7]. It is for the polarization function

hx0fp0,hx0fp0_sc and for self-energy hsfp0_sc.

IBZ

Recall IBZ first. We have a set of space-group operation SA = {Ai|i = 1, ...NA} (except

translation by reciprocal vectors). Ai is represented by space rotation and translation. This

SA can include time-reversal operation. q′ = Ai(q) belongs to BZ. (Simple multiplication of

rotation matrix to q may (or may not) need pulling back to (1st) BZ). For a set of mesh points

“{q} in the BZ”, Ai gives an one-to-one mapping between them. “{q} in IBZ” is a sub set of

1stBZ.

Consider a set of functions dependent of q as {gq(r, n)}. We can calculate X defined as a

sum of F [gq] as

X =
∑
q∈BZ

F [gq] =
∑

Ai∈SA

∑
q∈IBZ

Nq

NA
F [gAi(q)] (114)

Here IBZ is a set of q from which we can generate all the mesh points in the BZ. Nq is the

number of mesh points generated from q by SA (the number of the set q∗). For q = 0, Nq = 1.

For general q (lowest symmetric points), Nq = NA.

If Ai[gq] = gAi(q)(r, n) is satisfied, we have

X =
∑
q∈BZ

F [gq] =
∑

Ai∈SA

∑
q∈IBZ

Nq

NA
F [gAi(q)] =

∑
Ai∈SA

∑
q∈IBZ

Nq

NA
F [Ai[gq]]. (115)

This shows how we evaluate X only from {gq(r, n)|q ∈ IBZ}.
(NOTE: eigenfunctions calculated by diagonalization satisfy Ai[gq] = gAi(q)(r, n) except phase

factor. We consider cases that the phase factor is irrelevant.)

EIBZ

We consider sub group of SA with keeping given k. This sub group is written as Sk
A = {Ak

i |i =
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1, 2, ..., Nk
A}. For this sub group, we apply the same logic of IBZ, resulting

X =
∑
q∈BZ

F [gq] =
∑

Ak
i ∈Sk

A

∑
q∈EIBZ(k)

Nk
q

Nk
A

F [Ak
i [gq]] (116)

Here EIBZ(k) is a set of q from which we can generate all the mesh points in the BZ. Nk
q

is the number of mesh points generated from Nq by Sk
A. Note that k is fixed in Eq. (116).

Since Sk
A ⊂ SA, IBZ ⊂ EIBZ(k). That is, equivalent q poinst in IBZ might be diffrenciated in

EIBZ(k).

See Eq.(50) in Ref.[7]. call Seteibz -->call eibzgen returns Sk
A stored in the modele

m_eibz.

Note normazization is

N =
∑
q

1 =
1

Nk
A

∑
Ak

i ∈Sk
A

∑
q∈EIBZ(k)

Nk
q =

∑
q∈EIBZ(k)

Nk
q (117)

For poralization

We apply Eq. (116) to Fk[gq], resulting

X(k) =
1

Nk
A

∑
Ak

i ∈Sk
A

 ∑
q∈EIBZ(k)

Nk
qF

k[Ak
i [gq]]

 . (118)

This means that we have to calculate weighted average only for gq ∈ EIBZ(k), and then finally

symmetrized (symmetrization is in call x0kf_v4hz_symmetrize in hx0fp0.sc.m.F,hx0fp0.m.F

or newly developing hrcxq.

We apply Eq. (118) to Eq.(22) in Ref.[7] resulting Eq.(51) in Ref.[7]. Then we need to

rotate MPB for given space group rotation Ak
i . Note that Ak

i keeps k of MPB. This is in the

next section.

Note that call eibzgen stores not only Sq
A(eibzsym), but also the weight Nk

q (nwgt) in

the module m_eibz. (role of q and k may be turn around in m_eibz)

For self-energy

In hsfp0.sc.m.F(not in hsfp0.m.F), we have symmetrization as Eq.(52) in Ref.[7]. But used

formula is a little different.

We use Eq. (117) as it is. As in the same manner of poralization function, we call eibzgen

at first. To obtain weighted sum of self-energy at q, we calculate weigted sum for k ∈ EIBZ(q).

(note the sum is controlled by nrkip which is the weights copied from nwgt (MPI parallelization

is used). When nrkip=0, we skip corresponding do loop.)

Symmetrizer is call zsecsym, called from the main program of hsfp0.sc.m.F. Its core

part is

zsect(ii1:ie1,ii2:ie2)= zsect(ii1:ie1,ii2:ie2)

& + matmul( dconjg(transpose(rmatjj(1:ne1,1:ne1,iblk1))),

& matmul(zsec(ii1:ie1,ii2:ie2,iqxx),

& rmatjj(1:ne2,1:ne2,iblk2)) )

. This is the self-energy rotated by the rotation matrix rmatjj, which is generated by

call rotwvigg in it. (NOTE: we carefully treat degenerated bands to keep symmetry well. It

makes block decomposition(due to degeneracy) of self-energy matrix. A block is zsect(ii1:ie1,ii2:ie2),

where band indeces ii1:ie1 are degenerated bands).

H Rotation of eigenfuncitons andMPB by the space-

group operations

H.1 space-group rotation of PMT eigenfunction

We sometimes have to map eigenfuncions by space group operations.

An space-group operation is specified by (g,∆), which contains a 3 × 3 space-rotaiton

matrix g together with a translation vector ∆. Recall that ∆ = 0 for the symmorphic cases.
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This (g,∆) makes a rotation r → r′ as

r′ = g(r) +∆, (119)

which is equilalent to

r = g−1(r′) +∆−1, (120)

∆−1 = −g−1(∆) (121)

Further, we calculate which atomic site is mapped to which atomic site for give (g,∆). It is

given as

g(R) +∆ = R′ +∆TR. (122)

In ecalj, the array miat(ipos=1,npos) gives R′ in the primitve cell. tiat(3,ipos) gives the

translation of multiples of primitive cell vectors ∆TR. Here R is the atom in the unit cell.

The rotation of an function F → F ′ by (g,∆) is defined so that F ′(r′) = F (r). Here F ′(r′)

is written as g[F ](r′). Thus we have

g[F ](r) = F (g−1(r) +∆−1) (123)

Let us apply this to the bloch sum function Ak
RuL(r) ≡

∑
TARuL(r−R−T) exp(ikT)

in Eq. (4). (Here we get the angular momentum index L. u is for radial part of index.) Then

we have

g[Ak
RuL](r) = Ak

RuL(g
−1(r) +∆−1) =

∑
T

ARuL(g
−1(r) +∆−1 −R−T) exp(ikT)

=
∑
T

ARuL(g
−1(r+ g(∆−1)− g(R)− g(T))) exp(ikT)

=
∑
T

∑
L′

ARuL′(r+ g(∆−1)− g(R)− g(T))DL′L(g) exp(ikT)

=
∑
T

∑
L′

AR′uL′(r−R′ −∆TR − g(T))DL′L(g) exp(ikT)

=
∑
T′′

∑
L′

AR′uL′(r−R′ −T′′)DL′L(g) exp(ig(k)T
′′) exp(−ig(k)∆TR)

=
∑
L′

A
g(k)
R′uL′(r)DL′L(g) exp(−ig(k)∆TR), (124)

where we use AR′uL(r) = ARuL(r) since R and R′ sites should be equilalent sites. We use

cancellation ∆ = −g(∆−1). DL′L(g) is the rotaion matrix of the real spherical harmonics for

g.

H.2 space-group rotation of PMT eigenfunction

We have eigenfunction rotation routine subroutine rotwvigg called from zsecsym.F.

MTO part:

With this Eq. (124), coeffecients of eigenfunctions for the MTO part of eigenfunctions are ro-

tated (mapped) by the space group operation g. It is coded in subroutine rotwvigg(eigenfunction

rotation routine) as

...

phase = [(exp(-img2pi*sum(qtarget*tiat(:,ibas,igg))),ibas=1,nbas)]

do iorb=1,norbmto !orbital-blocks are specified by ibas, l, and k.

ibas = ibastab(iorb)

l = ltab(iorb)

k = ktab(iorb)

init1 = offl(iorb)+1

iend1 = offl(iorb)+2*l+1

init2 = offlrev(miat(ibas,igg),l,k)+1

iend2 = offlrev(miat(ibas,igg),l,k)+2*l+1

evecout(init2:iend2,:)= matmul(dlmm(-l:l,-l:l,l,igg),evec(init1:iend1,:))*phase(ibas)

enddo

...
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Here

ndimh = nlmto + napw: the size of PMT Hamiltonian

evec(1:nlmto,1:nband) : the coeffecients of eigenfunctions on MTO

igg: index specifying the space-group operation g

qtarget: qtarget=g(k)

ibas: site index within the primitive cell.

iorb is the index of MTO part of block (2l + 1 elements for m = −l,−l + 1, ..., l).

l is the angularmomentum index. l of L.

k is the radial index.

miat: site index ibas is mapped to miat(ibas,igg)

tiat: ∆TR

offl: offset for the iorb block

offlrev: offset for the (ibas,l,k) block

The Block init1:iend1 is mapped to the block init2:iend2.

In order to call rotwvigg, we have to call readhamindex() so as to set up variables ltab,ktab,offl,oflrev,...

in m_hamindex module in advance.

Orbital index tables (* tbl is read from a file @MNLA CPHI (See Sec.12.1) by readmnla_cphi.

The last column in @MNLA CPHI contains the orbital-block index. The orbital-blocks are speci-

fied by l and k, its size is 2l+1. The number of i is exactly the number of lines of @MNLA CPHI.

APW part:

In subroutine rotwvigg(eigenfunction rotation routine) we also have part for the APW.

Formula is

g[exp(i(k+G)r)] = exp(i(k+G)(g−1(r) +∆−1)) = exp(i(g(k) + g(G))(r+ g(∆−1))

= exp(i(g(k+G)r) exp(i(k+G)∆−1)

= exp(i(ḡ(k) + g(G) + (g(k)− ḡ(k)))r) exp(−i(k+G)∆). (125)

(Our definition of PW (IPW) has ’no nomalization factor’.) Here g(k) is pulled back to be

ḡ(k) in the 1stBZ. Their difference is g(k)− ḡ(k). We define barG as Ḡ = g(G)+(g(k)− ḡ(k)).
Thus it is coded as

(here we use q instead of k, sorry for confusion).

...

igg: index for space group operation.

nlmto: the size of MTO part.

ikt = getikt(q) !index for q

ikt2 = getikt(qtarget) !index for bargq = \bar{g}(q)

do ig = 1,napw_in !number of APW

qpg = q + matmul( qlat(:,:),igv2(:,ig,ikt)) ! q+G

qpgr = matmul(symops(:,:,igg),qpg) !g(q+G)

nnn= nint(matmul(platt,qpgr-qtarget)) !integer sets for barG= g(G)+ g(q)-bargq

ig2 = ngvecprev(nnn(1),nnn(2),nnn(3)) ! index for barG

evecout(nlmto+ig2,:)= evec(nlmto+ig,:) * exp( -img2pi*sum(qpgr*shtvg(:,igg)) )

enddo

...

H.3 space-group rotation of MTIPW expansion of eigenfunc-

tion

In ecalj, we re-expand eigenfuncitons in the manner of MTIPW form, that is, MTpart+IPWpart

as in Eq. (8) in the GW calculations. In the form of MTIPW, we have to map eigenfunctions

by space-group operations. As in the manner of rotwvigg, we have rotmto and rotipw. These

are for rotation MTpart and IPW parts.
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H.4 space-group rotation of Mixed Product Basis

We need all the matrix elements ⟨Ψq+kn′ |ΨknE
q
ν ⟩. for given inputs of q,k, n, n′. Here Eq

ν is

the Coulomb-diagonalized mixed product basis [7].

In the procedure of EIBZ (See Eq. (118) around), we have to rotate MPB.

Module module m_rotMPB2 (in m_rotMPB.F) is for generating the rotation matrix zrotm.

With zrotm, we rotate MPB in call X0kf_v4hz_symmetrize, where we multiple conversion

matrix \zcousq for conversion from MPB to {}Eq
ν } as

rcxq(:,:,iw,jpm) = matmul(zcousqc,matmul(rcxq_core,zcousq)) (see code in x0kf_v4hz_symmetrize).

zrotm is generated by calling rotmto2,rotipw2. These are essentially similar with rotmto,rotipw,

but the basis set in the MT region, and the basis set for the interstitial region are different

from the case of eigenfunctions. Thus we supply ibas_tbl and so on as

use m_pbindex,only: norbt, ibas_tbl,l_tbl,k_tbl,offset_tbl,offset_rev_tbl,

& max_ibas_tbl,max_l_tbl,max_k_tbl,max_offset_tbl

in module m_rotMPB2.

H.5 space-group rotation of Hamiltonian (obsolate)

Let us consider the rotation of Hamiltonian. For (g,∆), we have ⟨Ak
i |H|Ak

j ⟩ = ⟨g[Ak
i ]|H|g[Ak

j ]⟩
because Hamiltonian unchanged by (g,∆). Thus we have

⟨Ak
i |H|Ak

j ⟩ = ⟨g[Ak
i ]|H|g[Ak

j ]⟩ =
∑
i′j′

⟨Ag(k)
i′ zi′i|H|Ag(k)

j′ zj′j⟩ =
∑
i′j′

z∗i′i⟨A
g(k)
i′ |H|Ag(k)

j′ ⟩zj′j

= z†⟨Ag(k)
i′ |H|Ag(k)

j′ ⟩z (126)

Thus we have

⟨Ag(k)
i′ |H|Ag(k)

j′ ⟩ = z⟨Ak
i |H|Ak

j ⟩z† (127)
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xxxxxxxxxx under construction xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

I xxxxxxxxxxx MPI parallelization

The MPI parallelizaiton is still very limited. MPI in the current version is controlled by

“rankdivider” in hsfp0.sc.m.F,hx0fp0.sc.m.F,hx0fp0.m.F. In GW calculations, we have to

take sum for some types of indexes. And some indexes are external ones. The rankdivider

try to divide these indexes to groups and pass these regions to each cores. Each cores sum

up for given regions only. And then we do take total sum to obtain final results before

symmetrization.(I think symmetrization may be too time consuming, it may be bette to skip

EIBZ?).

I think we need to extend the rank-divider idea for better MPI parallelization.

J real space sphere integral

See module m_SphericalDesignInt. With the spherical t-design, we can perform real-space

integral for a sphere. It is very useful for debugging.

K Expansion of non-local functions, need fixing xxxxxxxxx

... xxxxx under construction xxxxx...

We expand the Coulomb interaction v(r, r′) = e2/|r− r′| as
v(r, r′) =

1

Nc

∑
k

∑
IJ

M̃k
I (r)vIJ(k){M̃k

J (r
′)}∗

vIJ(k) =
1

Nc

∫
V

d3r

∫
V

d3r′{Mk
I (r)}∗v(r, r′)Mk

J (r
′)

(128)

This expansion is general for the two-point non-local functions. However, for convenience, we

expand the polarization function D as
D(r, r′, ω) =

1

Nc

∑
k

∑
IJ

Mk
I (r)DIJ(k, ω){Mk

J (r
′)}∗

DIJ(k, ω) =
1

Nc

∫
V

d3r

∫
V

d3r′{M̃k
I (r)}∗D(r, r′, ω)M̃k

J (r
′)

(129)

and the dielectric function ϵ (and also the inverse dielectric function ϵ−1 ) as
ϵ(r, r′, ω) =

1

Nc

∑
k

∑
IJ

M̃k
I (r)ϵIJ(k, ω){Mk

J (r
′)}∗

ϵIJ(k, ω) =
1

Nc

∫
V

d3r

∫
V

d3r′{Mk
I (r)}∗ϵ(r, r′, ω)M̃k

J (r
′).

(130)

L Expansion of a plane wave with the mixed basis,

need fixing

... xxxxx under construction xxxxx...

If we substitute a plane wave eik·r/
√
Ω for Fk(r) in Eq.(28), we have

1√
Ω
eik·r =

∑
J

Mk
J (r)C̃

k0
J

C̃k0
J =

1√
Ω

∫
Ω

{M̃k
J (r)}∗eik·rd3r.

(131)

For small k, the maximum eigenvalue of the Coulomb matrix should be v(k) ≡ 4πe2/|k|2 and

the corresponding eigenvector shoud be equal to C̃k0
J . So we can get C̃k0

J from the eigenvalue

problem instead of evaluating the integral of Eq.(131).
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In hvccfp0.m.f, we get the maximum eigenvalue ϵ0(k) and corresponding eigenvector C̃k0
J

from ∑
J

[vIJ(k)− ϵ0(k)Ok
IJ ]C̃

k0
J = 0. (132)

Then we check the normalization∑
IJ

(C̃k0
I )∗Ok

IJ C̃
k0
J = 1 (133)

and calculate the two quantities

v(exact) = Ω
4πe2

|k|2 , (134)

v(cal) = Ω
∑
IJ

(C̃k0
I )∗vIJ(k)C̃

k0
J = Ωϵ0(k), (135)

which are shown in the end of the output of hvccfp0.m.f (lvcc by the script gw_lmf or

eps_lmf) such as follows.

--- vcoul(exact)= 0.166657D+05 absq2= 0.5565111898526868D-01

--- vcoul(cal ) = 0.166587D+05 -0.484112D-19

You can see the agreement is good enough! The quantity C̃k0
J is stored into Mix0vec. It is

read into the variable gbvec in hx0fp0.m.f. We also store the next quantity;

Ck0
J ≡ 1√

Ω

∫
Ω

{Mk
J (r)}∗eik·rd3r

=
∑
I

{OIJ}∗
1√
Ω

∫
Ω

{M̃k
I (r)}∗eik·rd3r

=
∑
I

OJIC̃
k0
I . (136)

It is read into the variable zzr in hx0fp0.m.f.
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M ... xxxxx under construction xxxxx...

(Usuda’s old note from here)

... xxxxx under construction xxxxx...

In this note, we denote the primitive lattice vector as {ai|i= 1, 2, 3} (=alat*plat(1:3,i)),

the volume of unit cell as Ω = |a1 × a2 · a3|, and the reciprocal lattice vector as {bi|i=1, 2, 3}
(=2*pi*qlat(1:3,i)/alat).

We assume the periodic boundary condition for quantities as Ψ(r) = Ψ(r + N1a1) =

Ψ(r + N2a2) = Ψ(r + N3a3). Correspondingly, we use a Brillouin zone (BZ) discrete mesh,

which is given as

k(i1, i2, i3) = 2π

(
i1
N1

b1 +
i2
N2

b2 +
i3
N3

b3

)
(137)

for i1 = 0,1,2, ...N1−1 and so on. Within the volume V =ΩNc = ΩN1N2N3, we normalize

eigenfunctions and so on. However, it is rather convenient to use the normalization within a

unit cell Ω because we know the property∫
V

Fk(r)Gk′
(r)d3r = δkk′Nc

∫
Ω

Fk(r)Gk′
(r)d3r (138)

for any functions Fk and Gk′
with the Bloch periodicity specified by k and k′. In the GW

code, we store the cell-normalized eigenfunction Ψ̃kn(r) to DATA4GW;

Ψ̃kn(r) ≡
√
NcΨ

kn(r) (139)∫
Ω

|Ψ̃kn(r)|2d3r = 1. (140)

This Ψ̃kn(r) is expanded as

Ψ̃kn(r) =
∑
au

αkn
auA

k
au(r) +

∑
G

βkn
G Pk

G(r), (141)

Ak
au(r) ≡

∑
T

Aau(r−Ra −T)eik·T, (142)

Pk
G(r) ≡ 0 if r ∈ any MT

≡ ei(k+G)·r otherwise, (143)

where Ak
au(r) is the Bloch sum of the atomic function Aau(r) in the a-site muffin-tin (MT)

sphere. Pk
G(r) denotes the interstitial plane wave (IPW). Here T is the lattice translation

vector; Ra is the position of the a-site in the cell; G denotes the reciprocal vector; u denotes

the index to specvectorify the argumentaion basis. Ak
au(r) is orthnormlized as∫

|r|<Va

Aau(r)Aau′(r)d3r = δuu′ , (144)

where Va is the size of the a-site MT. The normalization is

1

Nc

∫
V

{Ak
au(r)}∗Ak′

a′u′(r)d3r = δkk′δaa′δuu′

∫
Ω

|Ak
au(r)|2d3r = δkk′δaa′δuu′ (145)

1

Nc

∫
V

{Pk
G(r)}∗Pk′

G′(r)d3r = δkk′

∫
Ω

{Pk
G(r)}∗Pk′

G′(r)d3r = δkk′

∫
Ω

P 0
G′−G(r)d3r.(146)

N ... xxxxx under construction xxxxx...

Dielectric function

N.1 Dielectric function without local-field correction

... xxxxx under construction xxxxx...

Approximating ϵ−1(q, ω) as 1/ϵ(q, ω) corresponds to neglecting the local-field correction.
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ϵ(q, ω) is given as

ϵ(q, ω) =
1

V

∫
V

d3r

∫
V

d3r′e−iq·rϵ(r, r′, ω)eiq·r
′

= 1− 1

V

∫
V

d3r

∫
V

d3r′
∫
V

d3r′′e−iq·reiq·r
′
v(r, r′′)D(r′′, r′, ω)

= 1− v(q)D(q, ω), (147)

where the relation∫
V

v(r, r′′)e−iq·rd3r = v(q)e−iq·r′′ (148)

is used and

v(q) =
∑
IJ

(C̃q0
I )∗vIJ(q)C̃

q0
J , (149)

D(q, ω) =
∑
IJ

(Cq0
I )∗DIJ(q, ω)C

q0
J . (150)

In hx0fp0.m.f, we calculate v(q), D(q, ω) and ϵ(q, ω) by

vcmean = sum( dconjg(gbvec) * matmul(vcoul,gbvec) )

x0mean = sum( dconjg(zzr) * matmul(zxq(:,:,iw),zzr))

eps(iw,iqixc2) = 1- vcmean * x0mean

and the inverse dielectric funcion is given by 1/eps(iw,iqixc2) . The matrix element of the

polarization, DIJ(q, ω) = zxq, is obtained from the subroutine x0kf. The results of Re(ϵ),

Im(ϵ), Re(ϵ−1) and Im(ϵ−1) are stored in EPS01.nolfc.dat .

N.2 Dielectric function with local-field correction

... xxxxx under construction xxxxx...

The inverse dielectric function ϵ−1(q, ω) is calculated as follows:

ϵ−1(q, ω) =
1

V

∫
V

d3r

∫
V

d3r′e−iq·rϵ−1(r, r′, ω)eiq·r
′

=
∑
IJ

{
1√
Ω

∫
Ω

M̃q
I (r)e

−iq·rd3r

}
ϵ−1
IJ (q, ω)

{
1√
Ω

∫
Ω

{Mq
J (r

′)}∗eiq·r
′
d3r′

}
=

∑
IJ

(C̃q0
I )∗ϵ−1

IJ (q, ω)C
q0
J . (151)

In hx0fp0.m.f, we calculate ϵ−1(q, ω) by

epsi(iw,iqixc2) = sum( dconjg(gbvec) * matmul(zw0, zzr) )

and the dielectric function is given by 1/epsi(iw,iqixc2) . The matrix element of ϵ−1
IJ (q, ω) =

zw0 is obtained from the subroutine wcf. The results of Re(ϵ), Im(ϵ), Re(ϵ−1) and Im(ϵ−1)

are stored in EPS01.dat .
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O ... xxxxx under construction xxxxx...

memo

ESEAVR (average of sigm at high energy)

Rotation of q by space group (not unique if q is on the BZ boundary).

Discontinuity of bands at BZ boundary

Mechanism of GW calculation for Metal. Drude weight.

Tetrahedron method. Accumulation of imaginary part, and Hilbert transformation. No time-reversal symmetry case.

Rseq,Broryden mixing,Anderson mixing (Yellow note by okuda).

zmelt: unified matrix elements generator m_zmel.F

structure constant:

conversion between spherical harmonics and real harmonics

New offset Gamma procedure. Invariant tensor expansion.

Anisotropy problem.

Wave function and MPB rotation

EIBZ symmetrization

bloch: FFT of sigm.

Calculate effective mass:

hvccfp0: v(exact) vs. v(cal) (eigenvalue of v matrix).

Spectrum function mode:

lmfa:

alagr3z: efficient? We may need improvement.

PFLOAT:

(not now?) ropbes.f ropyln.f had a problem due to compilar option.

FTMESH: denser gives better? ehk=ehf?

Atomic position relaxiation:

epsPP mode:

Need to check it.

q=0 limit.

With FSMOM, Efermi is not uniquely given in job_band_nspin2*.

It is given by a bndfp-bzwtsf-bzwsf L300 block

if ((.not. lfill) .or. (metal .and. (nkp .eq. 1))) then

(bisection method to determine a middle of LUMO and HOMO).
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It can give some energy between LUMO and HOMO.

Small changes of computational condition can give large change.

But no problem.

======

PDOS: sigm_fbz is required.

(when cp sigm,rst,GWinput ->LDA-like result.

Then cp sigm_fbz ->it fails.

Need to make new directory, and copy rst,sigm_fbz.)

And how to check it. (whether

======

mixbeta:

takao@TT4:~/ecalj/fpgw$ grep mixbeta */*.F

main/hqpe.sc.m.F: call getkeyvalue("GWinput","mixbeta",beta,default=1d0,status=ret)

mixing parameter on sigm file.

As the default beta is unitiy, mixsigm and mixsigma files are

=======

Check convergecne on QSGW.

grep rms lqpe*
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