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1 Introduction

This package implements the ASA local spin-density approximation using Green’s
functions (GF) in a special layer geometry. It adds a program ‘lmpg’ to the ASA
suite, which plays approximately the same role as the LMTO-ASA band pro-
gram ‘lm’ or the crystal Green’s function program ‘lmgf’.

lmpg is similar in most respects to the crystal GF package, except for some
significant complications that arise from treatment in a layer geometry. In
lmpg, there is a ‘special direction’, which defines the layer geometry, and for
which the GF are generated in real space. It is specified by the third of the
primitive lattice translation vectors (token PLAT). In the other two directions,
Bloch sums are taken in the usual way; thus for each qp in the parallel directions,
the hamiltonian becomes one-dimensional and is thus amenable to solution in
order-N time in the number of layers.

In the layer geometry, the material consists of an active, or embedded region,
which is cladded on the left and right by left and right semi-infinite leads. The
crystal (or bicrystal) is partitioned into slices, or principal layers (PL), in the
‘special direction’. This is done because the hamiltonian H is short-ranged: if
each PL is thick enough so that H only connects neighboring PL, the computa-
tional effort scales linearly with the number of PL. Actually lmpg just assumes
each PL is thick enough so that H is tridiagonal in the PL representation. The
principal layers are defined by you in (see token RMAX=, Sec. 2). It is your
responsibility to see that each PL is thick enough so that H connect to only
nearest-neighbor PL on either side.

lmpg has to deal with some of the complications arising from how the end-
points are treated. The first PL is treated as the ‘left endpoint’ and the last PL
are treated as the ‘right endpoint.’ The first PL and last PL are replicated to the
left and right, respectively, and extend outside of the embedding region. (Both
are replicated implicitly an infinite number of times to form the semi-infinite
leads). In the ‘left’ case a replica each site belonging to first PL is shifted ‘to
the left’ by PLATL; similarly, a replica of each site belonging to last PL are are
shifted ‘to the right’ by PLATR, so that we have

. . . |

PLATL
︷ ︸︸ ︷

L − replica |

PLAT
︷ ︸︸ ︷

PL 0 |PL 1 |PL 2 | . . . |PL n−1 |

PLATR
︷ ︸︸ ︷

R − replica | . . .
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See Sec. 2 for how lmpg reads PLAT, PLATL, PLATR.
It should be clear that the embedding region should be constructed so that

the PL adjacent to the leads are already bulk-like. The C- region should be
made large enough so that charge densities of the PL near the edges of the C-
region (e.g. PL 0 and 1, and PL n-1 and n) rather closely resembles densities
of the semi-infinite (bulk) leads. This point is discussed later.

As we discuss later, the GF of the embedding region is computed from the
(surface) GF of the L-replica and the (surface) GF of the R-replica. Thus space
is partioned into three regions, the left (L-) end region, the right (R-) end region,
and the center, embedding (C-) region. The end regions are treated specially in
two contexts:

1. Surface Green’s functions for the end regions are needed to supply the
boundary conditions for the embedding Green’s function

2. lmpg requires special treatment for the electrostatics joining the three
regions.

1.1 Green’s functions for the end regions

By its construction the PL of each end (L- and R-) region would, if repeated
throughout all space, constitute a periodic solid. lmpg has a special branch
(specified by token MODE=2, Sec. 2) for the L- and R- PL that enable it to
generate the self-consistent left- and right- GF for each corresponding periodic
solid. This is needed to make the potential of each end region. Note that it
is assumed to be bulk-like. The GF should be the same as that generated by
3D Green’s function program lmgf, except that this GF has a mixed-real and
k-space representation, and here separate Green’s functions and potentials are
needed for each end region. Also, owing to the mixed mixed-real and k-space
representation, the methodology for constructing G is different. We will call the
periodic solid of repeating L- PL the “bulk” crystal of the L- region; similarly
for the R- PL. Thus, there is a well-defined “bulk” GF and potential the L- PL,
and one also for the R- PL.

Once the L- and R- bulk potentials are made, the surface Green’s function
can be computed, which is needed to supply the proper boundary conditions to
generate the GF in the embedding region.

1.2 Self-consistency and charge neutrality

A Green’s function (or any band) method requires integration to the Fermi
level, which is determined by charge neutrality. Also in general, the electro-
static potential is determined up to an arbitrary constant; but specifying one
determines the other. In the band code, we supply (or assume) the constnat,
and find the corresponding Fermi level. In the GF programs we indirectly fix
this constant potential by specifying the Fermi level as an input. Requirement
of charge neutrality fixes the constant potential shift. Note that the GF have a
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complication not present in a band program, where the entire spectrum is com-
puted: the constant shift must be determined by an iterative procedure. In the
crystal GF case, it is iteratively determined by a Pade approximant (see lmgf
documentation). Metals and nonmetals are distinguished in that in the latter
case, there is no DOS in the gap and therefore the Fermi level (or potential
shift, if the Fermi level is specified) cannot be specified precisely. As we will
describe, something similar happens in the layer case, but it is a little more
complicated. The Fermi level and constant potential are stored in array vshft,
and permanently on disk in file vshft described below and in the documentation
found in the source code iovshf.f. Actually lmpg’s freedom to shift potentials
is more general and can accomodate potential shifts at separate sites, useful in
non-self-consistent or limited self-consistent calculations.

The layer GF case is complicated by the partioning into three distinct re-
gions. Self-consistency, and therefore determination of potential proceeds dif-
ferently depending on whether one is computing the potential for the bulk L-
and R- (MODE=1) or for the layer system (. . . |L |C |R | . . . ) (MODE=1).
Computing the bulk potential for the L- and R- regions (MODE=2), is quite
analogous to the crystal GF, albeit for two independent regions L and R. Pe-
riodic boundary conditions are assumed separately; each case the end layer is
assumed to be a periodic solid and the (periodic) Green’s function is computed
for it. Thus the potential in each end layer may be shifted independently by
a constant shift VL or VR. Self-consistency proceeds analogously to the crys-
tal GF, independently for the regions L and R. Constant potential shifts are
determined independently for each layer in the same way as the in crystal GF
code; the potential shift is computed that satisfies charge neutrality for the cor-
responding periodic solids; see lmgf documentation, for further details. If the
L- (R-) PL is a metal, the constant potential shift is not adjustable, because
the Fermi level is specified at the outset. Note, however, that the Fermi level is
only sharply defined for a metal; thus it is important to distinguish metal and
nonmetal cases independently in the two layers. You can set them with tokens
LMET= and RMET= in the PGF category; see Sec. 2. These tokens play the
role of the METAL= token for the crystal GF code.

Charge neutrality in the layer case (. . . |L |C |R | . . . ) is more complicated.
It should be satisfied independently in the each of the L-, C- and R- regions. In
practice, we assume that the density in the L- and R- end regions is bulk-like and
does not change once it has been calculated (MODE=2). Thus changes in the
density are confined to the C- region. The C- region has to be charge-neutral
because the L- and R- are already neutral, and the entire (. . . |L |C |R | . . . )
system must be neutral. The program proceeds by finding a shift that satisfies
charge-neutrality in the C- region and doesn’t worry about the rest. This is
reasonable since we assume at the outset that the C- region has enough PL near
L- and R- large enough to allow the density to be bulk-like, no charge should
spill into the L- and R- regions by construction. Thus, when computing the
Green’s function of the (. . . |L |C |R | . . . ) system in practice, the layer code
selects the shift VC so as to eliminate the deviation from charge neutrality in
the C- region, following the method of the crystal code lmgf. Only sites in
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the C- region are shifted by VC ; the potentials and charges in the L- and R
regions are left untouched. Once VC is found and the corresponding Green’s
function is generated, lmpg returns to the sphere program where it computes
the potential functions for the updated sphere charges and moments, computes
the electrostatic potential (see below) for the (. . . |L |C |R | . . . ) system, and
begins another pass in the self-consistency cycle.

Because of deviations from self-consistency, and also because of finite-size
effects discussed above, there can be some deviation from charge neutrality in
the end regions. lmpg will generate the GF in each end PL, so that the deviation
from neutrality may be computed. (You must have the ’bigemb’ option set for
lmpg to generate this information.) The sphere charges are shown in the table
headed by the lines:

PGFASA: integrated quantities from G

PL D(Ef) N(Ef) E_band 2nd mom Q-Z

and deviations of the end regions from charge neutrality are summarized at the
end of this table in lines similar to the following:

Deviations from charge neutrality:

Left end layer 0.003965

Right end layer 0.003965

However, lmpg does not use this information; instead it keeps the densities as
computed for the bulk L- and R- crystals. If these charges are not small, your
active region should be enlarged.

1.3 Electrostatics

At self-consistency there is a unique potential defined by the electrostatic po-
tential from the charges at each site and a global constant potential shift VC

that shifts the entire system. This shift makes makes each region charge neutral
and possesses within the C- region a dipole that will exactly align the Fermi
levels in the L- and R- regions, as we now describe.

For now let’s restrict ourselves to the case when both L- and R- regions are
metals. We can form compute electrostatic potentials in the L- and R- regions
by two different constructions:

1. Electrostatic potentials in L- and R- may be computed as in MODE=2,
that is by assuming L- and R- are bulk solids with periodic boundary
conditions in the respective L- and R- regions. In each case the potential
is completely fixed by charge neutrality.

2. Electrostatic potentials in L- and R- may also be computed from solution
of the potential of the entire (. . . |L |C |R | . . . ) system. This potential is
adjustable up to some constant shift.
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In practice these two constructions produce different potential in the L- and
R- regions. (Indeed, one might choose the constant shift that “best reconciles”
the mismatch in these two constructions. Versions of lmpg earlier than 6.14 did
something like this. The present version choose the constant shift so as to satisfy
charge neutrality in the C- region, as was discussed in the previous section.)

These potentials might be mismatched for two distinct reasons. One error
can arise because the density is not self-consistent. More exactly the density
doesn’t possess the requisite dipole, so that a global constant shift that “best
reconciles” the potential mismatch as constructed by the two methods above is
different from the one that “best reconciles” the mismatch on the right. Finite-
size effects (a C- region with insufficient PL near the end regions), is another
source of error.

Recall that lmpg freezes the potentials in the L- and R- regions. Thus, only
the central region is affected by the shift VC because the end PL shouldn’t be
shifted at all. lmpg does print out the electostatic potentials computed by the
two different constructions, and summarizes the deviations in a table similar to
the following:

Deviations in end potentials:

region met <ves>Bulk <ves>layer Diff RMS diff

L T 0.055210 0.058192 0.002982 0.011265

R T 0.055210 0.058192 0.002982 0.011265

RMS pot difference in L PL = 0.000127 in R PL = 0.000127 total = 0.000127

vconst that minimizes potential mismatch to end layers = 0.058835

vconst is now (estimate to satisfy charge neutrality) = 0.061817

difference = -0.002982

The top table compares the average electostatic potential in and end region
computed from the bulk geometry, and computed in the (. . . |L |C |R | . . . ) ge-
ometry. The later numbers compare the potential that “best reconciles” the
the methods of computation to the potential shift the program will actually
use. Note that the potential shift you actually should use is the one that meets
charge-neutrality in the C- region; indeed lmpg will find this shift on its own if
you invoke it in self-consistent mode (section 2).

When getting started, this table gives you a pretty reasonable guess at the
proper choice of the constant shift VC . That is, you might set VC as the one
that minimizes potential mismatch to end layers. You can adjust If you start
out with the choice VC by invoking lmpg in an interactive mode, or by setting
file vshft appropriately. If you do so, you will alleviate some of the burden on
lmpg in determining this shift.

If the potential in either the L- or the R- differs significantly (see case L-
and R- are both metals, below), or if there is significant deviation from charge
neutrality in the end PL, the user should enlarge the embedding region, as
the end PL are not sufficiently bulk-like. This difference should vanish at self-
consistency if you construct the embedding region with PL near the end regions
similar to those of the last region. Typically having 2 PL (say 0. . . 1, and n-
2. . . n-1 does a pretty good job keeping the discrepancies between the bulk- and
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layer potentials small.
Now we must distinguish between metal and nonmetal cases. If either end

layer is a nonmetal, its potential can shift by constant without affecting charge
neutrality. Therefore, if either L- or R- regions is a nonmetal, there can be a
constant shift in that region (change in band offset). Consider the following
cases:

• L- and R- are both metals. No potential shifts are allowed in the end
layers. In the self-consistency cycle (MODE=1) the program checks for
deviations from charge neutrality, and adjusts the potential in the (C)
region until neutrality is achieved. However, the density resulting from
this Green’s function will generate charges and electrostatic potentials V i

m

at sites i in the L- and R- layers. As mentioned above, potentials computed
from the (. . . |L |C |R | . . . ) system will reveal some differences relative
to the electrostatic potentials V

i
b when computed using just the L- or R-

charges and a geometry for infinitely repeating L- and R- layers. The
potentials calculated these two ways is printed out, as described above.

• Only one of L- or R- is a metal (LMET=f and RMET=t or vise-versa).
Now the nonmetallic end region can shift its potential by a constant to
best align to the potential computed from the (. . . |L |C |R | . . . ) system.
We choose the constant in the nonmetallic PL that best aligns V i

b and V i
c ;

that is that minimizes the RMS difference V i
b and V i

c .

• Neither the L- or R- is a metal (LMET=f and RMET=f). If the C region
is a metal (specified by BZ METAL=) the global potential shift should
conform to the shift in the C region. Both endpoints must be allowed to
float (there are two distinct band offsets). If no region is a metal, i.e. if
there is no DOS at the Fermi level, the system should already be charge
neutral and no shifts should be required.

1.4 Electrostatics in layer geometry

The correct procedure to construct electrostatics in a layer geometry is to carry
out 2D Ewald summations for each PL, and add up the contributions from all
PL. Because no one has come around to making 2D Ewald sums yet for this
program, we use a trick.

We compute the electrostatics via an Ewald summation of the following
supercell:

PLATL
︷ ︸︸ ︷

L − replica |

PLATL
︷ ︸︸ ︷

L − replica |

PLAT
︷ ︸︸ ︷

PL 0 |PL 1 |PL 2 | . . . |PL n−1 |

PLATR
︷ ︸︸ ︷

R − replica |

PLATR
︷ ︸︸ ︷

R − replica |

It assumes periodic boundary conditions of period in the layer direction

PLAT(3) + 2*(PLATL + PLATR)

Note that this scheme is only approximate. It will eventually be replaced by 2D
Ewald summations.
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2 Input for the layer Green’s function program

Most of the input for lmpg is similar to the band and crystal GF programs.
This section describes input specific to lmpg.

Each site must be assigned a ‘principal layer index’ to tell lmpg which PL a
site belongs to. In category SITE, each site should have a token PL:

ATOM=‘species-name’ PL=layer-index

Each group of sites with the same PL index are grouped together into a single
principal layer.
Remember that the principal layers should be large enough such that the range
of the hamiltonian connects only adjacent PL. The range of the hamiltonian is
fixed by the range of the structure; it is set in the STR category, token RMAX=
.
There is a lmpg-specific category, which includes the following:

PGF MODE=# PLATL=# # # PLATR=# # # GFOPTS= options SPARSE=#

Token MODE= tells lmpg what you want to do:

0 do nothing

1 calculate the diagonal GF, layer-by-layer. This is the appropriate mode
for self-consistent calculations

2 left- and right-bulk bulk GF. The endpoints require special treatment, and
this mode is designed to generate a self-consistent left- and right- bulk GF.
It should be run before invoking lmpg with MODE=1.

3 find k(E) for left bulk. This uses a special trick (see PRB 39, 923 (1989))
to find the wave numbers of the left bulk GF corresponding to a given
energy.

4 find k(E) for right bulk.

5 Calculate current using the Landauer formula.

Tokens specifying lattice vectors for the (. . . |L |C |R | . . . ) geometry:
Tokens PLATL=# # #

and PLATR=# # #
and a re-definition of PLAT(1:3,3)

The reason why PLATL and PLATR must be specified is because lmpg must
have information about the semi-infinite repeating layers that attach to each lead
and extend to ±∞. Referring to the diagram below, there is implied a second
L-replica of PL 0 shifted relative to PL 0 by -2*PLATL, another by -3*PLATL,
and so on. Similarly there is implied a second R-replica shifted relative to PL
n-1 by PLATR, another by 2*PLATR, and so on. This information is needed
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in order to make the crystalline Green’s functions (and also surface Green’s
function) of each end layer.

. . . |

PLATL
︷ ︸︸ ︷

L − replica |

PLAT
︷ ︸︸ ︷

PL 0 |PL 1 |PL 2 | . . . |PL n−1 |

PLATR
︷ ︸︸ ︷

R − replica | . . .

Caution: the inner product of PLATL with PLAT, and also the inner product
PLATR with PLAT must be positive. That way each padding layer adds to the
length of PLAT(3). (It is nonsensical for a principal layer to have a negative
thickness.) Therefore, the program will stop if either dot product is negative.

Note: at present, lmpg calculates electrostatic potentials using a 3D supercell
approach; see section 1.4. It does so by creating periodic boundary conditions
in the third dimension with length

PLAT(3) + 2*(PLATL + PLATR)

(Thus, PLATL and PLATR are needed in this second context as well, to carry
out the Ewald summations). PLAT(1:3,3) printed as output by program lmpg

reflects the addition of PLATL and PLATR.

Token GFOPTS=options-list

specifies a collection of optional extra functions. options-list is a series of strings
string1;string2;. . . The following individual strings specify:

emom generate the output ASA moments, needed for self-consistency

idos make integrated properties, such as the sum of one-electron energies

dmat make the density-matrix GRL,R′L′

sdmat make the site-diagonal density-matrix GRL,RL′ The density matrix is
written to a file ‘dmat’

pdos Make the partial density of states (this has never been checked)

p3 Use third order potential functions

Token SPARSE=1

uses a modified LU decomposition to generate the layer GF. It tends to be
significantly faster than the usual approach; compare test cases 5 and 6 in shell
script pgf/test/test.pgf/
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2.1 Potential shifts

File vshft holds information about potential shifts ( sections 1.2 and 1.3) The
global shifts are contained in the first line and keep information about Fermi
level, the global constant shift, and the shifts at the L and R end regions needed
to match the Fermi level. The syntax for the first line is

ef=# vconst=# vconst(L)=# vconst(R)=#

You can optionally add site-dependent potential shifts. After the first line,
add a line site shifts followed by as many lines as desired, one line per site
shift, e.g.:

ef=.03 vconst=-.01 vconst(L)=.02 vconst(R)=.03

site shifts

3 .1

4 .2

3 Program operation

lmpg starts by creating the left surface, and then proceeds ‘left-to-right’ layer-
by-layer to generate the surface GF 0,1,2,3,... until the rightmost layer is
reached. At that point the right surface GF is generated, and the crystal GF
is generated by embedding between the left- and right- surface GF. Then using
Dyson’s equation, lmpg proceeds layer-by-layer ‘right-to-left’ to generate the
crystal GF from the surface GF on the left and the crystal GF on the right.
This is done for each energy and k-point in the two-dimensional BZ.

3.1 Use in conjunction with other programs

You can use plane-analysis lmplan to analyze charge distributions by plane,
and also use it to create a ‘site’ file to facilitate making of lattices with pe-
riodic boundary conditions so that you can run programs ‘lm’ and ‘lmgf’ for
comparison.

At present lmpg cannot make the static response function, as can lmgf;
this can vastly improve effiency for self-consistency. However, if you make the
response function using lmgf, you can use it with the lmpg program. Here is
an example taken from the directory of pgf/tests/copt.

Invoke this command

lmplan copt -vpgf=1 -cstrx=file -vlmf=f -vnk1=6 --pr31 -vnit=10

-vgamma=f -vsparse=0 --no-iactiv --time=5

At the prompt, type

wsite -pad abc
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lmplan creates a site file named ‘abc.copt’ suitable for use with programs lm
and lmpg. It uses the padding layers as buffer layers. Conveniently, it satisfies
periodic boundary conditions. To verify this, try

> cp abc.copt site.copt

> lmchk copt -vpgf=0 -cstrx=file -vlmf=f -vnk1=6 --pr31 -vnit=10 -vgamma=f

-vsparse=0 --no-iactiv --time=5

Now you can make a suitable ASA static response function suitable for the
layer code with

> lmgf copt -vpgf=0 -cstrx=file -vlmf=f -vnk1=6 --pr31 -vnit=10

-vgamma=f -vsparse=0 --iactiv --time=5 -vscr=1

The q=0 response function is written to file ‘psta.copt.’ (This file has already
been created and sits in pgf/test/copt.) Once psta is created, it can greatly
facilitate convergence to self-consistency. Try running, for example, the test
script

> pgf/test/test.pgf --usepsta copt 5

will use the psta file to assist convergence when you use the switch –usepsta.
Look in particular at the RMS DQ, viz:

> grep RMS out.lmpg.self-consistent

PQMIX: read 0 iter from file mixm. RMS DQ=1.84e-3

PQMIX: read 1 iter from file mixm. RMS DQ=1.59e-4 last it=1.84e-3

PQMIX: read 2 iter from file mixm. RMS DQ=3.30e-4 last it=1.59e-4

PQMIX: read 3 iter from file mixm. RMS DQ=4.66e-5 last it=3.30e-4

If you invoke it in the usual way, viz without –usepsta:

> pgf/test/test.pgf copt 5

you should see the following lines

> grep RMS out.lmpg.self-consistent

PQMIX: read 0 iter from file mixm. RMS DQ=1.44e-3

PQMIX: read 1 iter from file mixm. RMS DQ=6.41e-3 last it=1.44e-3

PQMIX: read 2 iter from file mixm. RMS DQ=2.22e-1 last it=6.41e-3

PQMIX: read 3 iter from file mixm. RMS DQ=3.05e-2 last it=2.22e-1

PQMIX: read 4 iter from file mixm. RMS DQ=3.01e-2 last it=3.05e-2

PQMIX: read 5 iter from file mixm. RMS DQ=2.66e-2 last it=3.01e-2

PQMIX: read 6 iter from file mixm. RMS DQ=4.15e-2 last it=2.66e-2

PQMIX: read 7 iter from file mixm. RMS DQ=4.92e-2 last it=4.15e-2

PQMIX: read 8 iter from file mixm. RMS DQ=4.40e-2 last it=4.92e-2

PQMIX: read 8 iter from file mixm. RMS DQ=2.24e-2 last it=4.40e-2

The improvement with the response function is dramatic.
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Test cases

Shell script pgf/test/test.pgf checks out that the program is working prop-
erly, and it also is convenient to illustrate some of the features in lmpg.
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