Input Syntax for LM Suite (version 7)

Mark van Schilfgaarde
1 Nov, 2007

1 Introduction

The input system for the LM program suite is unique in the following respects:

1. Input files are nearly free-format A and input does not need to be arranged in a particular order. Data
parsed by identifying tokens (labels) in the input file, and reading the information following the token.
In the string:

NSPIN=2
token NSPIN tells the input parser where to find the contents (2) associated with it. Note that a token
such as NSPIN only acts as a marker to locate data: they are not themselves part of the data.

2. A tree of tokens completely specifies a particular marker. The full identifer we call a tag; it is written
as a string of tokens separated by underscores, e.g. SPEC_SCLWSR, SPEC_ATOM_Z, ITER_CONV. Thus a tag
is analogous to a path in a tree directory structure, and a token is analogous to either a directory or a
file. Tokens analogous to ’files’ (e.g. NSPIN above) are markers for data; tokens analogous to directories
contain as their contents tokens nested more deeply into the tree.

The same token may appear in more than one tag; their meaning is distinct, as we will see below.
Thus contents of token NIT in the tag STR_IINV.NIT are different from the contents of NIT in the tag
ITERNIT. Sec. 7?7 shows how the structure is implemented for input files, which enables these cases to
be distinguished.

3. The parser can read algebraic expressions. Variables can be assigned and used in the expressions.

4. The input parser has a limited programming language. Input files can contain directives such as
%if (expression)
that are not part of the input proper, but control what is read into the input stream, and what is left
out. Thus input files can serve multiple uses — containing information for many kinds of calculations,
or as a kind of data base.

2 Input structure: syntax for parsing tokens

This section explain how the tree structured tokens are supplied in the input file. A typical input fragment
looks something like:

ITER NIT=2 CONV=0.001
MIX=A,b=3

DYN NIT=3
(fragment 1)

The full path identifier we refer to as a tag. Tags in this fragment are: ITER, ITERNIT, ITER_CONV,
ITERMIX, DYN, DYNNIT. (Tags do not explicitly appear in the input, only tokens do.)

A token is one link in the path. A token’s contents consist of a string, which may include data (when it is
the last link in the path, e.g. NIT), or other tokens which name links further down the tree. It is analogous

Ithere are some mild exceptions to this; see discussion of categories in Sec. 77

to a file directory structure, where names refer to files, or to directories (folders) which contain files or other
directories.

The first or top-level tokens we designate as categories, (ITER, DYN in the fragment above). What designates
the range of a category? Any string that begins in the first column of a line is a category. A category’s
contents begin right after its name, and end just before the start of the next category. In the fragment
shown, ITER contains this string:

‘NIT=2 CONV=0.001 MIX=A,b=3’
while DYN contains

‘NIT=3’
Thus categories are treated a little differently from other tokens. The input data structure usually does not
rely on line or column information; however this use of columns to mark categories and delimt their range
is an important exception.

When a token’s contents contain data, the kind of data it contains depends on the token. Data may consist
of logical, integers or real scalars or vectors, or a string. The contents of NIT, CONV, and MIX are respectively
an integer, a real number, and a string. This fragment illustrate tokens PLAT and NKABC that contain vectors:

STRUC PLAT= 1 1/2 -1/2 1/2 -1/2 0 112
BZ NKABC=3,3,4

Numbers (more properly, expressions) may be separated either by spaces or commas.

How are the start and end points of a token delineated in a general tree structure? The style shown in
the input fragment 1 does not have the ability to handle tree-structured input in general. Some other
information must be added when the path has more than two levels, e.g. STR_IINV.NIT. A logical and
unambiguous way to delimit the range of a token would be to embed its contents in brackets [1, e.g.

ITER[NIT[2] CONV[0.001] MIX=[A,b=3]]

DYN([NIT[3]]

STR[RMAX[3] IINV[NIT[5] NCUT[20] TOL[1E-4]]]
(fragment 2)

Tags ITER and STR_IINV contain these strings:
‘NIT[2] CONV[0.001] MIX=[A,b=3]" and ‘NIT[5] NCUT[20] TOL[1E-4]’
while ITER.NIT, DYN.NIT and STR_IINV.NIT are all readily distinguished (contents 2, 3, and 5).

The LM parser reads input structured by the bracket delimiters, as in fragment 2. However such a format
is aesthetically unpleasant and hard for a person to read. For aesthetic reasons, some small compromises
are made, and ambiguities tolerated, so that the format similar to that of fragment 1 at the beginning of
this section can be used most of the time. These are:

1. Categories must start in the first column.

2. When brackets are not used, a token’s contents are delimited by the end of the category. Thus the
content of ITER_CONV from fragment 1 is ‘0.001 MIX=A,b=3’, while in fragment 2 it is the more
sensible ‘0.001’.

In practice this difference matters only occasionally. Usually contents refer to numerical data. The
parser will read only as many numbers as it needs. If CONV contains only one number, the difference
is moot. On the other hand a suppose the contents of CONV can contain more than one number. Then
the two styles might generate a difference. In practice, the parser can only find one number to convert
in the contents of fragment 2, and that is all it would generateE For fragment 1, the parser would
see a second string ‘MIX=...’ but it fail to convert it to a number (it not a valid representation of a
number). Thus, the net effect would be the same: only one number would be parsed.

2Whether or not reading only one number later produces an error, will depends on whether CONV must contain more than
one number or it only may do so.

3. When a token’s contents consist of a string (as distinct from a string representation of a number) and
brackets are not used, there is an ambiguity in where the string ends. In this case, the parser will delimit
strings in one of two ways. Usually a space delimits the end-of-string, asin ~ MIX=A,b=3. However, in
a few cases the end-of-category delimits the end-of-string — usually when the entire category contains
just a string, as in ~ SYMGRP R4Z M(1,1,0) R3D. If you want to be sure, use brackets.

4. Tags containing three or more levels of nesting, e.g STR_IINV.NIT, must be bracketed after the second
level. Any of the following are acceptable:
STR[RMAX[3] IINV[NIT[5] NCUT[20] TOL[1E-4]1]]
STR[RMAX=3 IINV[NIT=5 NCUT=20 TOL=1E-4]]
STR RMAX=3 IINV[NIT=5 NCUT=20 TOL=1E-4]

Finally, multiple occurences of a token are sometimes required, for example multiple site positions or species
data. The following fragment illustrates such a case:

SITE ATOM[C1 POS= 0 0 o0 RELAX=1]
ATOM[A1 POS= 0 0 5/8 RELAX=0]
ATOM[C1 POS= 1/sqrt(3) 0 1/2]

The parser will try to read multiple instances of tag SITE_ATOM, as well as its contents] The contents of the
first and second occurences of token ATOM are thus: ‘C1 POS= 0 0 0 RELAX=1" and ‘A1 P0OS= 0 0 5/8
RELAX=0’.

The format shown is consistent with rule 4 above. For historical reasons, LM accepts another kind of format
for this special case of repeated inputs:

SITE ATOM=C1 POS= 0 0 0 RELAX=1
ATOM=A1 POS= 0 0 5/8 RELAX=0
ATOM=C1 PO0OS= 1/sqrt(3) O 1/2

In the latter format, the contents of tag SITE_ATOM are delimited by either the next occurence of this tag,
or by the end-of-category, whichever occurs first.

3 Note that token ATOM plays a dual role: it is simultaneously a marker for input data—the string for ATOM’s label (e.g.
C1)—and a marker for tokens nested one level deeper, (e.g. contents of tags SITE_LATOM_POS and SITE_ATOM_RELAX).

