
Newton’s equation of motion and the “velocity Verlet” algorithm

We have some N particles having positions {r} and velocities {ṙ}. I will leave out the
braces and suppress particle labels and vector notation. Newton’s second law is

r̈ =
f
m

If we start at time t with known positions, velocities and forces, f , we can advance the
coordinates to time t + δt using a Taylor expansion exact to second order

r(t + δt) = r(t) + ṙ(t)δt +
1

2
r̈(t)δt2 (1)

r(t− δt) = r(t)− ṙ(t)δt +
1

2
r̈(t)δt2 (2)

Adding these together, we get

r(t + δt) + r(t − δt) = 2r(t) + r̈(t)δt2 (3)

This is called the “Verlet algorithm.” It’s inconvenient to carry two sets of positions (at
t and t− δt) so we prefer the “velocity Verlet” algorithm which updates the positions and
velocities like this:

r(t + δt) = r(t) + ṙ(t)δt +
1

2
r̈(t)δt2

ṙ(t + δt) = ṙ(t) +
1

2
[r̈(t) + r̈(t + δt)] δt

We can show that these two algorithms generate identical trajectories. The Taylor ex-
pansion to second order of r(t + 2δt) is

r(t + 2δt) = r(t + δt) + ṙ(t + δt)δt +
1

2
r̈(t + δt)δt2

while (1) is

r(t) = r(t + δt)− ṙ(t)δt −
1

2
r̈(t)δt2

adding these last two we get

r(t + 2δt) + r(t) = 2r(t + δt) + [ṙ(t + δt)− ṙ(t)] δt +
1

2
[r̈(t + δt)− ṙ(t)] δt2

The first quantity in brackets is

ṙ(t + δt) − ṙ(t) =
1

2
[r̈(t + δt) + r̈(t)] δt

and using (2) we end up with

r(t + 2δt) + r(t) = 2r(t + δt) + r̈(t + δt)δt2

which is the same as the Verlet algorithm (3).

You might think that the velocity Verlet is even less convenient because you’ll need to
retain the forces at time t and recompute them at time t + δt before you can update the
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velocities. But consider doing the following procedure, in which the symbols in boxes
represent the actions that take you from left to right.

r(t)

ṙ(t)

r̈(t)















−→ 1
2
iLv −→















r(t)

ṙ(t + 1

2
δt) = ṙ(t) + 1

2
r̈(t)δt (4)

r̈(t)

r(t)

ṙ(t + 1
2
δt)

r̈(t)















−→ iLr −→















r(t + δt) = r(t) + ṙ(t + 1
2
δt)δt

ṙ(t + 1
2
δt)

r̈(t)

r(t + δt)

ṙ(t + 1
2
δt)

r̈(t)















−→ 1
2
iLv −→















r(t + δt)

ṙ(t + δt) = ṙ(t + 1
2
δt) + 1

2
r̈(t + δt)δt

r̈(t + δt)
x





calculate force

r(t) and ṙ(t) have been advanced like this:

r(t) → r(t + δt) = r(t) + ṙ(t + 1
2
δt)δt

= r(t) + ṙ(t) + 1
2
r̈(t)δt2 using (4)

ṙ(t) → ṙ(t + δt) = ṙ(t + 1
2
δt) + 1

2
r̈(t + δt)δt

= ṙ(t) + 1
2
[r̈(t) + r̈(t + δt)] δt using (4)

and this is the velocity Verlet algorithm exactly as described above. At the point indicated
it is necessary to stop and recalculate the forces. This may be a nuisance if your program
is not built around the molecular dynamics integrator; indeed the calculation of force may
be the main focus of your program for example if it’s a complex bandstructure program.
But if you think of the “black box” 1

2
iLv as meaning this: “do nothing to the positions

but advance the velocities by half a timestep,” and you think of the “black box” iLr

as meaning “do nothing to the velocities but advance the positions by δt,” then you have

iLr : r → r + ṙδt

1
2
iLv : ṙ → ṙ + 1

2
r̈δt = ṙ + 1

2
(f/m)δt

Once your bandstructure program has calculated forces for a given set of positions make
the following sequence of updates to r and ṙ:

1
2
iLv −→ 1

2
iLv −→ iLr

x





gather statistics

You don’t even have to worry about the time arguments to r and ṙ; just use the most
recently updated values (you can throw away all previous values). However at each
operation the times are not necessarily synchronised as seen from the top of the page. So
be sure to gather statistics at a point where the times are aligned, as shown here.
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Using Liouville operators

We may assemble our particle positions into a vector Γ and ask how it evolves in time.

Γ̇ = ṙ
∂Γ
∂r

= iLr Γ

which defines the Liouville operator

iLr = ṙ
∂
∂r

The differential equation Γ̇ = iLr Γ can be integrated from 0 to t,

Γ (r(t)) = eiLr t Γ (r(0))

Now here’s a nifty identity, (see Appendix for a proof)

ea ∂/∂x Γ (x) = Γ (x + a)

And so, if we identify a with ṙ(0)t and x with r(0) we find that

Γ (r(t)) = Γ (r(0) + ṙ(0) t)

a simple shift of coordinates, exact however large t is. Compare this with “black box”
iLr .

Generally speaking the dynamics will depend on both positions and velocities so we need
to enquire about the evolution of a vector Γ composed of all positions and velocities.
Now we’ll see that the equations of motion cannot be propagated without error. For a
Hamiltonian system obeying Newton’s law of motion, r̈ = f/m, with ṙ = p/m we have

Γ̇ (r, ṙ) = ṙ
∂Γ
∂r

+ r̈
∂Γ
∂ṙ

=
p
m

∂Γ
∂r

+
f
m

∂Γ
∂ṙ

= iLΓ

and
iL = iLr + iLv

We cannot immediately integrate the differential equation by successive applications of
eiLr t and eiLv t because

e(iLr+iLv) t 6= eiLr t eiLv t

since the operators ∂/∂r and ∂/∂ṙ do not commute (just as in quantum mechanics). So
we use the “Trotter” identity

ea+b = lim
p→∞

(

ea/2p eb/p ea/2p
)p

=
(

ea/2p eb/p ea/2p
)p

eO(1/p3)

Identify a with iLv, b with iLr and 1/p with δt and we get

e(iLr+iLv)δt = e
1
2
iLv δt eiLr δt e

1
2
iLv δt + O(δt3)
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So to second order in the timestep δt the positions and velocities can be advanced exactly
as at the top of page 2 with elementary shifts of the variables (x → x + ẋ 1

nδt) using the
sequence

1
2
iLv −→ iLr −→ 1

2
iLv

This approach to the solution of an equation of motion by use of Liouville operators
is very general and powerful. You can show that the dynamics are both (i) reversible

and (ii) preserve volume in phase space. That is, they obey Liouville’s theorem that
the distribution of microstates in phase space is such that as the system evolves under
Newton’s equation their motion is that of an incompressible fluid. Clearly, the velocity
Verlet is hereby shown to possess both these two properties.

The Nosé–Hoover thermostat

Hoover proposed a set of equations of motion appropriate to the canonical ensemble.
The particles are subject to a velocity dependent force (like a viscous drag) that acts to
maintain the temperature at some target, Text, by slowing them down or speeding them
up.

The Nosé–Hoover equations of motion are

r̈ =
f
m

− ζṙ

ζ̇ =
1
Q

(

∑

mṙ2 −Nf kText

)

≡ G

=
1

τ2
p

(

T
Text

− 1
)

Here, Nf is the number of degrees of freedom, usually Nf = 3(N −1). ζ is the time-varying

“viscosity” which acts to keep the temperature constant.† It is given an inertial “mass,”
Q = NfTextτ

2
p by the user which corresponds to a time constant, or “relaxation time,”

τp. T is the instantaneous temperature. You can see that ζ varies most rapidly when the
temperature deviates most from its target.

Nosé and Hoover introduce an additional variable s which has the meaning of a scaling

of velocity and time, whose equation of motion is

ṡ/s = ζ ≡ ξ̇

where ξ = log s. Now to integrate these equations of motion using Liouville operators, we
note that our Γ is a vector

Γ = Γ (r, ṙ, ξ, ξ̇)

and so

Γ̇ = ṙ
∂Γ
∂r

+ r̈
∂Γ
∂ṙ

+ ξ̇
∂Γ
∂ξ

+ ξ̈
∂Γ

∂ξ̇

= ṙ
∂Γ
∂r

+
f
m

∂Γ
∂ṙ

− ζṙ
∂Γ
∂ṙ

+ ζ
∂Γ

∂ log s
+ ζ̇

∂Γ
∂ζ

† Sometimes ζ is written

ζ = ξ̇ =
pξ

Q

exposing ζ as the “velocity,” pξ the “momentum” and Q the inertial “mass” of the thermostat.
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from which we can write down the Liouville operator

iL = iLr + iLv + iLCv
+ iLξ + iLG

This is the notation of Frenkel and Smit. There now follows a dictionary showing the five
Liouville operators and the effects of eiL 1

nδt on one of the variables.

iLr = ṙ
∂
∂r

; eiLr
1
nδt = 1

niLr : r −→ r + ṙ 1
nδt

iLv =
f
m

∂
∂ṙ

; eiLv
1
nδt = 1

niLv : ṙ −→ ṙ + (f/m) 1
nδt

iLCv
= −ζṙ

∂
∂ṙ

; eiLCv
1
nδt = 1

niLCv
: ṙ −→ ṙ e−ζ 1

nδt

iLξ = ζ
∂

∂ log s
; eiLξ

1
nδt = 1

niLξ : log s −→ log s + ζ 1
nδt

iLG = G
∂
∂ζ

; eiLG
1
nδt = 1

niLG : ζ −→ ζ + G 1
nδt

The first two are familiar from the microcanonical ensemble, above. The third arises
from the friction term in the equation of motion and this can be seen as a scaling of the
velocities through the action of the thermostat. (Note we have used the second identity
in the Appendix.) The fourth updates log s and the fifth updates ζ , it becomes larger
or smaller (positive or negative) depending on G which measures the deviation from the
target temperature.

The rest is easy. There is not a unique Trotter factorisation of iL but this is the one
chosen usually. First write

iL = iLr + iLv + iLCv
+ iLξ + iLG

= iLr + iLv + iLT

and employ the following Trotter factorisation

eiLδt = eiLT
1
2
δt eiLv

1
2
δt eiLr δt eiLv

1
2
δt eiLT

1
2
δt +O(δt3)

Before giving details of how iLT is dealt with, we’ll treat it as a “black box,” and show
how a canonical NVT ensemble is worked into an MD program. In analogy with the
microcanonical NVE ensemble described earlier, the following table shows the operators
and time arguments of each variable before and after each factor is successively applied
to the dynamical variables.

calculate force




y

1
2
iLT −→ 1

2
iLv −→ iLr −→ 1

2
iLv −→ 1

2
iLT

r t − δt t− δt t− δt t t t
ṙ t − δt t− δt t− 1

2
δt t− 1

2
δt t t

r̈ t − δt t− δt t− δt t− δt
∣

∣

∣

∣

∣

∣
t t t

ζ t − δt t− 1
2
δt t− 1

2
δt t− 1

2
δt t− 1

2
δt t

log s t − δt t− 1
2
δt t− 1

2
δt t− 1

2
δt t− 1

2
δt t
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Note where the force is calculated to update ṙ, indicated by the bars, ‘||’. It may not be
convenient to break off the algorithm at that point to return to the force calculation, so
a more practical sequence of operators may be

1
2
iLv −→ 1

2
iLT −→ 1

2
iLT −→ 1

2
iLv −→ iLr

which can be entered for a given set of positions and forces and completed ready for the
next set. It’s understood in that case that the positions and forces correspond to one
time, the velocities and the friction are half a timestep behind. This means that statistics
must be gathered after a step at which all quantities are in synchrony. It’s not necessary
to keep explicit track of the time for each dynamical variable at each Liouville operation;
it is a fundamental property of the scheme that each operator takes current values; all
values may be overwritten as they are updated.

Finally, the details of the action of the “black box” 1
2
iLT can be revealed. The following

Trotter factorisation is made,

eiLT
1
2
δt = eiLG

1
4
δt eiLξ

1
2
δt eiLCv

1
2
δt eiLG

1
4
δt + O(δt3)

Using the “dictionary” at the top of page 5, we can write down the updating operations
that amount to an application of the “black box”

1
2
iLT = 1

4
iLG −→ 1

2
iLCv

−→ 1
2
iLξ −→ 1

4
iLG

on the vector Γ (r, ṙ, ξ, ξ̇) = Γ (r, ṙ, log s, ζ):

ζ −→ ζ + G 1
4
δt

ṙ −→ ṙe−ζ 1
2
δt recalculate kinetic energy

log s −→ log s + ζ 1
2
δt

ζ −→ ζ + G 1
4
δt

Note that the thermostat does not affect the particle coordinates but it does scale the
velocities without advancing them in time. Following this scaling the kinetic energy must
be recalculated in order to update G before the next application of 1

4
iLG .

Since the NVE ensemble follows Hamilton’s equations of motion the total energy HNVE =
K + V (kinetic plus potential energy) must be conserved. Therefore this is the quantity
to watch as the dynamics evolve to confirm the “health” of the MD simulation. The NVT
ensemble is a non Hamiltonian system, nevertheless there is a conserved quantity which
must be monitored over the simulation.

HNVT = K + V + NfkT log s +
1

2
Qζ2

= K + V + NfkT
(

log s +
1

2
τ2
p ζ2

)

Since we think of ζ as the “velocity” and Q as the inertial “mass” of the thermostat,
the last term is a kind of fake kinetic energy belonging to the thermostat. The term
NfkT log s is the “potential energy” associated with the thermostat. The equation of

motion for the scaling factor s, namely ṡ/s = ζ is ancillary in the sense that the two
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Nosé–Hoover equations on page 4 are sufficient to determine the dynamics. But it is
useful to update log s during the dynamics, since

log s =
∫ t

ζ(t) δt ≈
∑

ζ(t) δt

so by accumulating the viscosity ζ over the dynamics, its value can be compared with the
current value of log s as a further check on the health of the simulation.

Isothermal–isobaric NPT ensemble

For this we need to calculate the internal pressure, Pint, as well as the forces.

Pint =
1
Ω

(NkT + W)

where Ω is the instantaneous volume, T the instantaneous temperature, and

W =
1

3

∑

ij

rij · fij

is the “internal virial.” Here,

3NkT = 2K =
∑

mv2

is twice the kinetic energy. In the NPT ensemble it is necessary to distinguish the veloc-
ities, v, from the quantities ṙ which include a contribution from the changing volume,

ṙ =
p
m

+
pε
W

r = v + vεr

Here, vε and W = NTextτ
2
b are the “velocity” and inertial “mass” of the barostat (see the

footnote on page 4). The “mass” is introduced by the user through a relaxation time, τb.

The Nosé–Hoover equations of motion, modified by Martyna et al., are

ṗ = f − ζp−

(

1 +
3
Nf

)

vεp

ζ̇ =
1
Q

(

2K − (Nf + 1)kT + Wv2
ε

)

= G

v̇ε =
1
W

(

3Ω(Pint −Pext) +
3
Nf

2K − ζWvε

)

= Gε − ζvε

Ω̇ = 3vεΩ

The volume dilatation is 3ε = logΩ/Ω0, where Ω0 is the volume at t = 0. The “velocity”
associated with the change of volume is ε̇ = vε. Although these are complicated equations
of motion, they can be integrated using Liouville operators. A phase space vector is

Γ = Γ (r, p, ξ, ξ̇, ε, ε̇) = Γ (r, p, log s, ζ, ε, ε̇)
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and so the Liouville operator is

iL = ṙ
∂
∂r

+ ṗ
∂
∂p

+ ξ̇
∂
∂ξ

+ ξ̈
∂

ξ̇
+ ε̇

∂
∂ε

+ ε̈
∂
∂ε̇

= v
∂
∂r

+ vεr
∂
∂r

+ v̇
∂
∂v

− ζp
∂
∂p

−

(

1 +
3
Nf

)

vεp
∂
∂p

+ iLξ + iLG + vε
∂
∂ε

+ (Gε − ζvε)
∂

∂vε

=
[

(v + vεr)
∂
∂r

+ vε
∂
∂ε

]

+ v̇
∂
∂v

+ iLCv
+ iLξ + iLG

−

(

1 +
3
Nf

)

vεp
∂
∂p

+ (Gε − ζvε)
∂

∂vε

= iLr + iLv + iLTP

Note that in the context of the NPT ensemble, iLr is the operator in the square brackets
above. We deal with this later. Moreover iLG is not the same as in the NVT ensemble,
since the definition of G is modified by coupling to the barostat. Otherwise we proceed
as before. First we write

iLTP = iLCv
+ iLξ + iLG + iLνε + iLGε

and create a “dictionary” as in the case of the NVT ensemble.

iLCv
= −

(

ζ +

(

1 +
3
Nf

)

vε

)

v
∂
∂v

; eiLCv
1
nδt = 1

niLCv
: v −→ v e−(ζ+(1+(3/Nf))vε) 1

nδt

iLξ = ζ
∂

∂ log s
; eiLξ

1
nδt = 1

niLξ : log s −→ log s + ζ 1
nδt

iLGε
= Gε

∂
∂vε

; eiLG
1
nδt = 1

niLGε
: vε −→ vε + Gε 1

nδt

iLνε = −ζvε
∂

∂vε
; eiLνε

1
nδt = 1

niLνε : vε −→ vε eζ 1
nδt

iLG = G
∂
∂ζ

; eiLG
1
nδt = 1

niLG : ζ −→ ζ + G 1
nδt

The following Trotter factorisations are made.

eiLδt = eiLTP
1
2
δt eiLv

1
2
δt eiLr δt eiLv

1
2
δt eiLTP

1
2
δt

eiLTP
1

2
δt = eiLG

1

4
δt (5.6)

×
(

eiLνε
1
8
δt eiLGε

1
4
δt eiLνε

1
8
δt
)

(5.5)

× eiLξ
1

2
δt (5.4)

× eiLCv
1
2
δt (5.3)

×
(

eiLνε
1
8
δt eiLGε

1
4
δt eiLνε

1
8
δt
)

(5.2)

× eiLG
1

4
δt (5.1)

Now as in the NVT ensemble, having calculated forces for a given set of positions, the
following sequence of operations is performed.

1
2
iLv −→ 1

2
iLTP −→ 1

2
iLTP −→ 1

2
iLv −→ iLr
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The updating of dynamical variables by the operator eiLTP
1

2
δt is actually quite simple.

The steps 1–5 above require the following sequence of updates.

(5.1) : ζ −→ ζ + G 1
4
δt

(5.2) : vε −→ vε e−ζ 1
4
δt + Gε e−ζ 1

8
δt 1

4
δt

(5.3) : v −→ v e−(ζ+(1+(3/Nf))vε) 1
2
δt recalculate kinetic energy

(5.4) : log s −→ log s + ζ 1
2
δt

(5.5) : vε −→ vε e−ζ 1
4
δt + Gε e−ζ 1

8
δt 1

4
δt

(5.6) : ζ −→ ζ + G 1
4
δt

It is quite easy to verify, using the dictionary, that the sequence of operations (5.2) lead to
the result given here. Again, note that as long as the steps are carried out in the proper
order each dynamical variable can be overwritten with its updated value; no previous
values need to be retained. It’s very important to remember to recalculate the kinetic
energy once the velocities has been scaled by (5.3) and the values of G and Gε updated
before carrying out steps (5.5) and (5.6).

It remains to specify the operator of the modified eiLr δt in the NPT ensemble.

iLr =
[

(v + vεr)
∂
∂r

+ vε
∂
∂ε

]

The second component results in a simple shift of the strain, ε; the first is not found
using the dictionary, instead its action is regarded as equivalent to solving the differential
equation

ṙ = v + vεr

at constant v and vε. If the initial positions are those at time t then the solution at time
t + δt is

r(t + δt) = r(t)evε(t)δt + e
1

2
vε(t)δt sinh ( 1

2
vε(t) δt)

e
1

2
vε(t)δt

1
2
vε(t) δt

×

(

v(t)δt +
1

2

f(t)
m

δt2
)

We recognise the last line as v(t+ 1
2
δt)δt which is exactly the velocity we need; as can be

seen from the table at the end of page 5, on entry to iLr the velocity is half a timestep
ahead of the position coordinate. So, in summary we add this to the dictionary:

iLr = ṙ
∂
∂r

; eiLrδt = iLr : r −→ r e2tε + v etε sinh tε
tε

δt

ε −→ ε + vεδt

where, tε = 1
2
vεδt. To avoid the case that tε → 0, it’s safer to employ a Maclaurin

expansion of the fraction (sinh t/t =
∑

t2n/ (2n + 1)!). The purpose of ε is to provide a
scaling of the lattice constant and particle coordinates, Ω = Ω0 e3ε is the volume scaling,
lengths having a value a0 at t = 0 are scaled using a = a0 eε on exit from iLr .

The conserved quantity in the NPT ensemble is

HNPT = K + V +
(

Nf + 1
)

kT log s +
1

2

p2
ε

W
+

1

2

p2
ξ

Q
+ PextΩ

See the footnote on page 4. Here we have two fake kinetic energies associated with the
“velocities” and inertial “masses” of the thermostat and the barostat.
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Appendix

We can prove
ea ∂/∂x f(x) = f(x + a)

for constant a as follows.

ea ∂/∂x f(x) =
∞
∑

n=0

1
n!

an ∂n

∂xn f(x)

by the expansion of the exponential, while

f(x + a) =
∞
∑

n=0

1
n!

an ∂n

∂xn f(x)

by Taylor’s theorem.

A related identity is
eax ∂/∂x f(x) = f (xea)

We can prove this using the previous identity. Let c be a constant and let g and f be
functions of a variable, q. Then

ec ∂/∂g f(q) = ec ∂/∂g f
{

g−1 [g(q)]
}

= f
{

g−1 [g(q) + c]
}

Now ax∂/∂x = a∂/∂ logx, so making the making the substitution u = logx

ea∂/∂u f(x) = ea∂/∂u f
(

elogx
)

= f
(

elogx+a
)

= f(xea)

You can make up some further identities. For example, for a, β, γ all constants,

ea∂/∂x f(βx) = f (β (x + a))

eax∂/∂x f(βx + γ) = f (ea (βx + γ − aγ))
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