
ecalj manual

https://github.com/tkotani/ecalj

March 23, 2022

Abstract

ecalj is an all-electron full-potential electronic-structure calculation package, especially for

GW/QSGW calculations, in addition to its unique one-body problem solver which uses both

augmented plane waves (APWs) and the Muffin-tin oribitals (MTOs) simultaneously (the

PMT method =LAPW+LMTO). We try to make usage easier. In principle, we can perform

calculations for given crystal structures without bothered with computational settings. For

example, symmetry line for band plot is automatic. ecalj is based on the formulation in Refs.

[1] and [2] (See Kotani2114QSGWinPMT.pdf and KotaniKinoAkai2015FormulationPMT.pdf

at ecalj/Document/Manual/) on top of developments [3].

To get minimum usage for ecalj, read up to the Section.5 or Sec.8. (We can generate model

Hamiltonian through Wannier functions(ecalj/MATERIALS/CuMLWF, and so on, but not

documented well yet...)

Be careful. This document still contain many bugs... Let me know bugs in this manual

(try to fix things step by step). We need your help on this manual.

Requirement

To support our ecalj activity, we need your acknowledgment to ecalj in your publications.

See ecalj/README.org at https://github.com/tkotani/ecalj/.

Contributions

There are many contributors to this package during the collaboration with T.Kotani. T.Kotani

currently maintain the ecalj package as a results of them.

Relation with Questaal at http://www.questaal.org/:

Questaal is one-another package to perfome QSGW distributed by Mark van Schilfgaarde

mainly in FP-LMTO, not in the PMT. In the package, there is the driver to use a modified

version of the GW code in ecalj (GW part in Questaal is originated in ecalj). The FP-

LMTO in questaal and ecalj have some similarities (for input files and outputs).

History

T.Kotani learned the LMTO-ASA-GW code by F.Aryasetiawan, which is on top of the Stuttgart’s

LMTO-ASA, mainly by van Schilfgaarde under O. Jepsen and O. K. Andersen

http://www2.fkf.mpg.de/andersen/LMTODOC/LMTODOC.html. A FP-LMTO package is origi-

nally given by M.Methfessel, Mark van Schilfgaarde and their collaborators. T.Kotani devel-

oped an all-electron full-potential GW method on top of the FP-LMTO during his subbatical

at 1999-2000 at the lab of M.Schilfgaarde. Then the QSGW method has developed with the

help of S.Faleev and M.Schilfgaarde, first published in 2004. Then T.Kotani was adding new

functionality such as spin fluctuation, impact ionization. In year 2008, T.Kotani started the

PMT=LMTO+LAPW method to remove problem of the FP-LMTO. After T.Kotani moved

to Tottori-u at 2009, he spends time for the improvement of PMT method. T.Kotani and

H.Kino showed that PMT can describe even the diatomic molecules efficiently and accurately.

It turns out very limited number of APWs can remove such problems. Then T.Kotani have

developed PMT-QSGW method. It is now stable, easy, and reliable rather than the previous

version of QSGW on top of FP-LMTO. We can perform calculations just from given crystal

structures usually, but still some problem in cases with complicated electronic structures.

1

https://github.com/tkotani/ecalj
https://github.com/tkotani/ecalj/
http://www2.fkf.mpg.de/andersen/LMTODOC/LMTODOC.html

Contents

1 Introduction 4

1.1 Uniqueness of the ecalj package. 5

1.1.1 What do we expect for QSGW? . 6

1.2 Rule in this manual . 7

1.3 What can we do with the ecalj package? . 7

2 Install 8

2.1 Binaries and Scripts . 8

2.2 tests . 9

2.3 Directory structure . 9

3 Theory (note) 10

4 LDA/GGA calculations and Plots 12

4.1 Write crystal structure file, ctrls . 12

4.2 Generate default ctrl from ctrls by ctrlgenM1.py 15

4.3 crystal structure checker: lmchk . 15

4.4 ctrl file . 16

4.5 Run LDA/GGA calculations, and get convergence 16

4.6 DOS, PDOS plot . 18

4.7 Band plot . 18

4.7.1 syml genearator . 19

4.8 Useful samples: ecalj/MATERIAL/ . 19

4.9 How to add spin-orbit coupling? . 20

4.10 PROCASR (VASP format) generator . 21

4.11 efermi.lmf . 22

4.12 Effective mass calculation . 22

4.13 density and |eigenfunction|2 plot . 23

4.14 LDA+U . 23

4.15 QSGW after LDA+U . 25

4.16 partially occupied core-hole . 25

5 How to run QSGW calculation? 25

5.1 GWinput . 26

5.2 Run gwsc script . 27

5.3 Spectrum function: How to calculate 〈qn|Σ(ω)|qn〉 29

6 gwsc script to perform QSGW 32

6.1 outputs of gwsc . 32

6.2 Preparation stage of gwsc . 33

6.3 Main stage of gwsc . 33

6.4 Other functions (or scripts) . 34

7 Usage problems, QandA error messages. 34

8 Cautions for usage 36

8.1 lmf –help . 41

9 Wannier function 41

9.1 lwmatK1 and lwmatK2 . 42

10 ctrl file details 43

10.1 How to set local orbitals . 46

2

11 GWinput details 48

11.1 generate a template of GWinput . 48

11.2 overview of GWinput . 48

11.3 General section . 50

11.4 <QPNT> section . 54

11.5 set QPNT for eps mode (QforEPS section) . 56

11.6 <PRODUCT BASIS> section . 57

11.7 ANFcond (we can skip here since we do not check this option now. Need fix this if

necessary. 59

12 Main Output Files of GW part 61

12.1 QPU . 61

12.2 XCU . 61

12.3 SEXU . 61

12.4 SEXcoreU . 61

12.5 SECU . 62

12.6 TOTE.UP (TOTE.DN) . 62

12.7 TOTE2.UP (TOTE2.DN) . 62

12.8 DOSACC.lda . 62

12.9 DOSACC2.lda . 62

12.10Core ibas* l*.chk . 62

12.11VXCFP.chk . 62

12.12The Fermi energies in this GW code. 62

13 mkGWIN lmf2 and its I/O Files 64

13.1 echo 0|lmfgw . 64

13.2 gwinit . 64

13.3 echo -100|qg4gw . 65

14 gwsc script and its I/O Files 66

14.1 echo 0| lmfgw si . 67

14.2 echo 1| qg4gw . 67

14.3 echo 1|lmfgw si . 67

14.4 lmf2gw . 68

14.5 rdata4gw v2 . 68

14.6 echo 1|heftet . 69

14.7 hchknw . 69

14.8 echo 3|hbasfp0 . 69

14.9 echo 0| hvccfp0 . 70

14.10echo 3|hsfp0 . 70

14.11echo 0|hsfp0 . 70

14.12echo 1|hsfp0 . 70

14.13echo 11|hx0fp0 . 70

14.14echo 12|hsfp0 . 71

14.15echo 0|hqpe . 71

15 Check list for convergence on GW calculations 72

16 Linear response calculations 74

16.1 eps lmfh, epsPP lmfh: the dielectric functions 74

16.2 epsPP lmfh: the dielectric function(No LFC— faster) 75

16.3 How to calculate correct dielectric funciton? . 75

17 Utility 81

•Reference

3

1 Introduction

With ecalj , we can do not only standard calculations (LDA/GGA/LDA+U, relaxation of

atomic positions), but also the quasiparticle self-consistent GW calculations(QSGW), linear

responses (charge and spin), Wannier functions (and effective interaction for them).

This is base on an unique one-body problem solver, the PMT method (=the Linearized

APW+MTO method) [1]. Thus we identify the QSGW method implemented in ecalj as the

PMT-QSGW method. Introduction to the PMT-QSGW is given in Sec.1.1. Today “QSGW”

is accepted as a standard procedure in the electronic structure calculations [4].

First, see README.org shown at https://github.com/tkotani/ecalj#ecalj- (or ecalj/README.org

in the package). Free to download ecalj package from it, and use it. The QSGW code is

version controlled by git. ecalj is related to a FP-LMTO package lmv7 seen at

(ecalj/Document/Manual/CategoryAndToken.org (or html)).

The lmv7 and ecalj are branched at year 2009. After branched, we added new features: simple

install and test; all codes are in f90 (no C compiler); new methods, especially PMT-QSGW;

MPI parallelization for QSGW; simple usage with automatic setting of default files by python

3; tools to convert cif, VASP-POSCASR to ecalj, symmetry-line generator, and so on. PMT-

QSGW shows more stable convergence than the previous version, FP-LMTO-GW 1.

——————–

ecalj package mainly consists of two parts. One is one-body part(PMT part), the other is

many-body part(GW part).

One-body part (PMT part), based on [1]

We can perform standard calculations such as LDA,GGA,LDA+U, atomic position relaxation,

and so on. In addition, the PMT part has an interface to perform GW (and QSGW) calcula-

tion: the one-body part can include a given non-local exchange-correlation potential stored in

a file sigm.*. 2. The QSGW calculation is performed by a script gwsc, which has an iteration

loop calling the one-body program (lmf-MPIK) and many-body part (GW part) alternatively.

The many-body part generate the file sigm.*. See Fig.6 and around.

Many-body part (GW part), based on [2]

As the inputs for the GW calculation, we have to supply the eigenfunctions and the eigenvalues

from the one-body part to the GW part. The eigenfuncions re-expanded by the two types

of basis functions, the atomic-like argumentation functions in the muffin-tin(MT) spheres,

and the plane-waves in the interstitial region, say, the interstitial plane-wave (IPW) hereafter.

IPW is defined as the usual plane waves in the interstitial region, but zero within MTs’. The

IPWs + ”atomic like functions within MTs” make “a basis set to expand eigenfuncitons”. See

Eq.(17) of [2].

We need another basis set to expand “product of eigenfuncions”. That is, the mixed

product bases (MPB)

[5, 6], which consists of the two kinds of bases (caution: do not mixed up with the basis set

for eigenfuncitons); (i)the local atom-centered functions confined to MT spheres, so-called the

product basis; (ii) IPW. The product-basis are calculated from products of solutions to the

Schrödinger equation within the MT sphere. The Coulomb matrix v, the dynamically screened

Coulomb interaction W , and so on, are expanded in the MPB. It can virtually span all the

space made of product of eigenfunctions (but, in practical calculations, we need to use a small

size of the bases to reduce computational time). We include full energy-dependence of W (ω).

See Sec.3 of [2].

Recently T.Kotani includes the Wannier function generator, which was originally developed

by T.Miyake and H.Kino on top of previous version of GW part. Thus the Wannier functions

(including effective interactions) can be generated in the PMT-QSGW. (U parameters in the

full-screening and cRPA).

1In cases to treat magnetic systems which have intrinsic magnetic fluctuations, we may need to be careful about
initial condition or mixing procedure to get convergence. In cases, we need to start from LDA+U results as initial
condition from which we start QSGW. Let me know about such trouble.

2In the case of using sigm.*, total energy shown in the console output (also in save.*) are just the indicator, not
the meaningful total energy

4

https://github.com/tkotani/ecalj#ecalj-

1.1 Uniqueness of the ecalj package.

We will explain two unique points of ecalj .

PMT:

Central part in an electronic structure packages is one-body problem solver. It means how

to calculate eigenvalues/eigenfunctions for a given one-body potential. Inversely, we have to

generate new one-body potential for given eigenfunctions/eigenvalues based on the density

functional theory (DFT) in the LDA or GGA (In the followings, LDA means both of LDA and

GGA). Then we can make the electron density self-consistent by iterations until converged,

and obtain total energy of ground states. Then we can calculate atomic forces by perturbation.

Based on such an one-body problem solver, we can implement kinds of methods; e.g, dielectric

function, magnetic susceptibility, transport and so on. Furthermore, we can implement higher-

level approximations such as the QSGW method explained below. An one-body problem solver

(in linear methods) are characterized by

(i) linear combinations of what basis set to represent eigenfunctions;

(ii) how to represent electron density and one-body potential.

In ecalj , we use the PMT method [1, 7] as the one-body problem solver. The PMT method is

a new all-electron full potential method. It uses not only the augmented plane waves (APW)

but also the muffin-tin orbitals (MTO) together, in addition to the local orbital (lo’s), to

represent the eigenfunctions (no other methods use two kinds of augmented waves together).

Thus eigenfunctions are expanded in the linear combinations of the APWs, MTOs, and the

lo’s. The formulation is clarified in Ref.[1]. Then the electron density and the one-body

potential are given in the “3-components representation”. That is, the electron density (one-

body potential) is divided into three components,

“smooth part + onsite muffin-tin (MT) part − counter part”.

Here the counter part is in order to remove smooth part within MTs. This formalism (Soler-

Williams formalism [8, 9]) is also used in the projected augmented wave (PAW) method such

as VASP.

We now usually use highly localized MTOs together with APWs of low energy cutoff (3 ∼ 4

Ry). 3 I think this is promising not only for efficient DFT/QSGW scheme, but also for kinds

of applications in future.

QSGW:

In ecalj , we can perform the GW calculation. The usual GW approximation is so-called

“one-shot GW” starting from LDA. It usually only calculates differences between the quasi-

particle energies (QPEs) and the LDA eigenvalues by a perturbation (only diagonal part of

self energy for the LDA eigenfunctions). Its ability is limited; it may fail when its starting

point (eigenfunctions and eigenvalues supplied by LDA) is problematic. This is the reason

why we originally develop the QSGW method. The QSGW now becomes popular and taken

as a possible candidate to go beyond current limitation of such GW and LDA/GGA [4]. In

principle, results given by QSGW do not depend on LDA anymore; the LDA are only used to

prepare initial condition for self-consistency iteration cycle of the QSGW calculation 4.

Usually the QPEs obtained by QSGW reproduce experiments better than LDA. For exam-

ple, the band gap by GGA for GaAs is about 0.5 eV in contrast to the experimental value of

1.69 eV 5. On the other hand, the QSGW predicts about 1.8∼ 1.9eV, a few tenth of eV larger

than experiment (for practical use, we sometimes use “hybrid functional between QSGW and

LDA” so as to obtain smaller band gap). Even in the case of NiO and so on, the QSGW gives

reasonable results (there is a tendency to give a little larger band gaps than experiments).

This is in contrast to the case of the one-shot GW applied to NiO, where we can not have

good agreement with experiments because the stating points in LDA is problematic.

The ecalj have other functions. LDA+U, atomic forces and relaxation (in GGA/LDA),

core level spectroscopy and so on. In addition, we can calculate dielectric functions and

3current implementation have not yet efficiently use this locality; this must allow us to speed up one-body problem
solver.

4Exactly speaking, we use LDA idea for efficient implementation of QSGW; thus obtained results are slightly
dependent on the choice of LDA or GGA

5We undo electron-phonon effect (0.06eV) and spin-orbit effect (0.11eV) from the true the experimental value
1.52 eV.

5

magnetic responses from QPEs and the quasiparticle eigenfunctions given by LDA/QSGW.

But total energy in QSGW is still in research (shown total energies in QSGW calculations are

dummy now).

The QSGW calculations are very time-consuming; roughly speaking, it takes 10 or more

times expensive than usual one-shot GW (although we can reduce computational time by

choosing computational conditions). Thus the size of systems which we can treat is limited

to ten atom in a cell or something, say, with a node of 16 cores; computation may require a

week or so to have reasonable convergence. (heavy atoms require longer computational efforts,

light atoms faster; non-magnetic systems are easier. We still have much room to accelerate

the method, but not have done yet so much. Minimum MPI parallelization is implemented).

The computational effort is ∝ N4 in the most time-consuming part of QSGW.

1.1.1 What do we expect for QSGW?

Let us recall hybrid functionals such as B3LYP, and LDA+U. In hybrid functional methods,

we use Vxc = (1-α)*LDA+α*(Fock exchange like term), where α is taken to be ∼ 0.25 usually
6. The α can be dependent on materials; for metals α should be almost zero. For larger band

gap insulator, α becomes larger. 7 Despite of success of the functional, its ability is limited.

For example, it is known that a hybrid functionals fail to describe metals such as bcc Fe. On

the other hand, we have LDA+U method which succeeded to describe materials including

localized electrons. However, it contains kinds of ambiguity and U is chosen by hand. The

important part of the hybrid functional methods and LDA+U is the non-local potential. It is

missing in the DFT. As we discussed above, they give some success but not satisfactory. We

somehow need to have a method to determine high-quality non-local potential (a substitution

of the exchange-correlation potential in LDA). It is the QSGW method.

Note two important aspects of non-local potential (missing character in the local potential

used in DFT). One is the onsite non-locality; it is also taken into account by LDA+U model.

However, note that relative shift of O(2p) band with respect to the center of 3d band is not in

LDA+U. The other is the off-site non-locality (mainly between nearest neighbors), which may

relate to LUMO-HOMO gap. A non-local potential can behave a projector which push down

only the HOMO states (valence band) to lower energy. This can be in the hybrid functional

but not in LDA+U.

In the QSGW, we determine such a non-local potential with the calculation of the GW

method, in a self-consistent manner (we repeat GW calculations until converged). We can

expect QSGW much more than hybrid methods/LDA+U. Roughly speaking, because the

QSGW automatically determine U of LDA+U, or alpha of the hybrid functionals. More

accurately speaking, we determine not only G0 but also W (the screened Coulomb interaction)

self-consistently. Here W corresponds to U and alpha. Thus QSGW gives reasonable results

even if it is applied to metals such as Fe. For systems with metallic screening, it gives small

non-locality (results are close to those of LDA). For systems with large band gap, QSGW gives

large enough non-locality (like 0.25*(Fock exchange)).

Since we now need to treat complex systems, e.g, metal on insulator, it is very essential to

treat kinds of materials on a same footing.

The main purpose of QSGW is to determine an one-particle effective Hamiltonian H0

8, which describes the quasiparticle picture (or independent-particle picture) for the sys-

tem we calculate. In other words, QSGW divides the full many-body Hamiltonian H into

H = H0 + (H −H0). The screened Coulomb interaction W is determined self-consistently in

the QSGW iteration cycle.

In comparison with LDA, we see differences;

� Band gap. QSGW tends to give slightly larger than experiments. It looks systematic.

6exactly speaking, we have range cutoff for Fock exchange term in the HSE functional in addition
7If you use α = 1 (Hartree-Fock limit), the band gap of Si becomes 20eV or something.
8people often pronounce this “H-naught”

6

� Band width. Usually, sp bands are enlarged (except very low density case such as Na).

This is the case for homogeneous electron gas. As for localized bands like 3d electrons,

they can be narrowed.

� Relative position of bands. e.g. O(2p) v.s. Ni(3d). More localized bands tends to get

more deeper. Exchange splitting between up and down (like LDA+U) get larger. In

cases such as NiO, magnetic moment become larger; closer to experimental values.

� Hybridization of 3d bands with others. QSGW tends to make eigenfunctions localized.

However, reality is complexed, and not so simple in cases.

1.2 Rule in this manual

� This font is for executable file(program) or shell scripts.

� echo 3|hbasfp0 means doing hbasfp0 with the argument ’3’ supplied as the standard

input (read(*,*) in fortran).

� This font is for files, directories, contents of files, or variables used in codes.

� ctrl.si,rst.si and so on mean the case of Si. You may need to replace the extension si for

your case. (this extension is given by user. Lower case, number, and underscore [a-z0-9]

are allowed.) In the followings, ctrl.* means a file wish such an extension.

� There are files named foobarU and foobarD, which are for up spin (isp=1) and for down

spin(isp=2), respectively; for example, SEXU and SEXD. We sometimes use foobarU to

denote foobarU and foobarD together.

� k vector in the Brillouin zone is called as q or k.

1.3 What can we do with the ecalj package?

At Feb.2015, what we can do is as follow. We have limited parallelization. (e.g. k point

parallel).

� LDA/GGA LDA+U, calculations, atomic forces and relaxation. Spin-orbit is included

only for co-linear spin-density cases.

� Quasi-particle(QP) energy in the 1st-iteration from LDA. (one-shot GW)

Make band plot for LDA and the QP energies.

� Spectrum function of the self-energy Σ. Life time (imaginary part) of QPs.

� Dielectric function, and its inverse. (including local-field effect or not).

� QP self-consistent GW (QSGW)

� magnetic susceptibility.

� Wannier function. (not only one-body part, but also effective interaction W and cRPA)

7

2 Install

Install and minimum tests are easy; even in a note PC, e.g., we can use gfortran in Ubuntu.

In Thinkpad T480s (2018) install may take five minutes, and all tests may take another fifteen

minutes.

For productive runs, we may need multi-cores. Current implementation for parallelization

by MPI is limited (not so much especially for the dielectric function part yet). Thus, probably,

it may be not so efficient to use too many cores.

Follow the instruction of ecalj/README.org.

or we can see the same one at https://github.com/tkotani/ecalj/README.org. We have a

command ecalj/InsallAll.ifort and so on. This command installs ecalj and run a series

of install tests automatically.

2.1 Binaries and Scripts

Main binaries and Scripts contained in ecalj are

� ctrlgenM1.py

Generate default input file ctrl.* from the structure file ctrls.* . The latter file only

contains information of crystal structure.

� lmfa

Spherical atom calculation as initial condition, and core charge.

� lmchk

Check atomic positions, crystal symmetry, and computational conditions. Check ID of

MuffinTins (MTs of atoms specified by ctrl file is re-ordered by computer.

� lmf and lmf-MPIK LDA/GGA,LDA+U calculations. (or we can use Vxc in QSGW

instead). We mainly use lmf-MPI (k-parallel version) instead of lmf.

� PROCAR mode of lmf: Fat band mode.

mpirun -np 4 lmf-MPIK --mkprocar --band:fn=syml mgo gives PROCAR

(Try an example /ecalj/MATERIALS/MgO PROCAR/. Run ./job at the directory).

� gwsc

QSGW calculation

� job_band,job_tdos,job_pdos

band, fermi surface, tdos, pdos plot.

� job_fermisurface

Run job_fermisurface cu -np 4 10 10 10. This write down all band energies (around

Ef) for 10x10x10 in BZ. Then we can view it with xcrysden as xcrysden --bxsf fermiup.bxsf

(usage of xcrysden need to be written here). With –allband added for job_fermisurface,

we can write all the bands. So, we need this option if you like to write iso-energy surface

at high (or low) energy.

� epsPP lmfh

Dielectric funciton without local field correction (LFC).

� eps lmfh

Dielectric funciton with LFC

� epsPP lmfh chipm

Non-interacting transverse spin polarization.

� gw lmfh

One-shot GW calculation. This also show life-time of QPs (QPU lmf). (we need make it

parallelized...)

� genMLWF

Wannier functions and matrix elements of W on it. A implementation of cRPA included.

� dqpu

A small python script to compare QPU.* files (eigenvalues are compared) numerically.

8

https://github.com/tkotani/ecalj/README.org

2.2 tests

Install.ifort run tests at ecalj/TestInstall.

In the following, si:gw_lmfh means ’>make si_gw_lmfh’ at ecalj/TestInstall/; this test is

performed with the Makefile at the directory.

si:gw_lmfh/ Results: QPU

si:gwsc/ : QPU,log.si

gas:gwsc/ : QPU,log.gas

nio:gwsc/ : QPU,log.nio

fe_epsPP_lmfh_chipm: : ChiPM*

gas:eps_lmfh/ : EPS*

gas:epsPP_lmfh/ : EPS*

(These are just samples; not for practical calculations)

2.3 Directory structure

ecalj/
/InstallAll.ifort, Install.gfortran ! install and test
/CMDsample !CMD tutorial samples
/Document !
/GetSyml ! Brillouin zone and symmetry lines generator and visualizer.
/MATERIALS !job_materials.py and examples.
/SRC !source file, test, binaries.
/SRC/exec !Makefile and scripts.
/SRC/TestInstall/ ! Install test; this is invoked from Install.*
/StructureTool ! POSCAR converter, and structure tool
/TOOLS !Tools for developers

9

3 Theory (note)

Except the technical details, we need to know minimum for these theories.

� DFT in LDA/GGA.

� GW

� QSGW

There are literatures as for GW. A recent one is Ref.[4]. In addition, it is better to know the

basics of the PMT method (LAPW+LMTO method) [1]. Here is a small note for GW .

Green function

The Green’s function G(r, r′, ω) is the central quantity in the GW calculation. In the one-

particle theory (mean-field theory/non-interacting case), the Schrödinger eq. is

(i
∂

∂t
−H0)ψ(r, t) = 0 (1)

Here H0 is the one-particle Hamiltonian which contains electrostatic potential plus exchange-

correlation potential Vxc (here we don’t care how it is given. This should be static but can be

non-local as Fock term). When we have (unkown) source term J(r, t) instead of 0 in the right

hand side of Eq. (1), we can calcuate ψ(r, t) by multipling inversion of the operator (i ∂
∂t
−H0).

This is the (non-interacting) Green funciton G(r, r′, ω) defined as

(i
∂

∂t
−H0)G = δ(t− t′)δ(r− r′). (2)

As this shows, G is the inverse matrix of the operator (i ∂
∂t
− H0), (we pay attention to the

boundary condition, especially for time-direction: retarted, advanced or time-ordered). Thus

we can write G = 1/(i ∂
∂t
− H0) = 1/(ω − H0). In other words, the Green function G is the

integration kernel in order to convert a differential equation Eq. (2) to an integral equation.

This is the same as the case of Poisson equation (Laplacian) for the electrostatic problem;then

1/|r − r′| is the Green function for the conversion (then we calculate electro static field φ(r)

for give source term ρ(r).

In the case of electro static problem, we have two ways to solve the problem. One is the

direct method to solve differential equation, the other is using such integration kernel. They

are equivalent, but the latter is easy to handle and suitable for numerical calculations (under

the assumption of “superposition low”, that is, linear response). Although G(r, r′, t− t′) con-

tains time variables (to describe wave propagation), essentials are the same.

Green function: many body case

G(r, r′, ω) is the quantity which is well defined even in the many-body perturbation theory. It

is defined as the expectation value as 〈0|ψ̂(rt)ψ̂†(r′t′)|0〉 (this is not accurate. See literatures..).

Here we use the second-quantized field-operator ψ̂. This definition of G is a natural extension

of the one-particle case.

However, there are differences in the G of one-particle case and many-body case. In the

one-particle case, we have no interaction between electrons. Thus an electron added to the

ground state (which is by filling electrons up the Fermi energy) is the eigenstate. An electron

going on can not be an eigenstate, because of the correlation effect and exchange effect.

Let me explain the correlation effect. In contrast to this, one-particle state (=the quasi-

particle(QP)) in the many-body theory can be not the eigenstate; it moves in the sea of ohter

electrons and holes, which can be excited to other states, or an moving electron can move with

polalized cloud of other electrons and holes. Its motion is affected by oher electrons. It will

lose energy gradually; the QP can have life time. This may be identified as the correlation

effect.

Let me explain the exchange effect. This is due to the Fermi statistics. The electron, which

you focus on, can not be distinguished from other electrons. (Thus mu-on can not feel this

effect. G for mu-on in solids only contains pure correlation effect). From a point of view, this

exchange effect is interpreted as a hopping effect, sudden jump from an electron to another

elecron (actually the Hartree-Fock theory gives zero effective mass at the Fermi energy for

metallic systems).

10

We can include both of the effects in the GW calculation at the lowest order. Exactly

speaking, these two effects are really mixed up. However, in GW (since GW is at the lowest

order), these two are clearly separated.

The rigorous equation for G is(
i
∂

∂t
−H0 + (Σ(r, r′, t− t′)− Vxc)

)
G = δ(t− t′)δ(r− r′). (3)

Only the difference is adding Σ(r, r′, t − t′) − Vxc. In other words, all unknown effects are

pushed into this term. Many body effect are pushed into (downfolded or projected into) the

self-energy (=dynamical one-particle potential) Σ(r, r′, t − t′). We don’t treat many-body

quantities such as X(r1t1, r2t2, r3t3) directly in the GW calculations.

The GW method is how to give the Σ(r, r′, t− t′) in the lowest order. Because of the long-

range property of the Coulomb interaction, we need to have a special technique (not a simple

perturbation). Σ(r, r′, t− t′) is calculated as the product of G×W , where G is (usually) just

the non-interacting Green function given in Eq. (2). W is the dynamically screened Coulomb

interaction calculated in RPA.

QSGW

Note that Eq. (3) completely cancels the effect of Vxc(r, r′) since it is included in H0. Thus

this division is not meaningful if we can solve a problem completely. However, what we can do

is only the perturbation. Quantities for H0 is taken as the basic quantities. On it, we apply

the perturbation. Equivalently we can have a division H = H0 + (H + H0), where H is the

many-body Hamiltonian.

In priniple, we can start from any Vxc. However, as long as we use perturbation theory, we

have to minimize the effect of Σ(r, r′, t− t′)− Vxc. The degree of freedom of the choice of Vxc

is used to minimize it. This is the self-consistent pertubation theory idea for QSGW.

If Σ(r, r′, t − t′) − Vxc give small effect, we can use the concept of the QP (independent

particle picture) as the basis to evaluate physical quantities.

We have to determine best (or optimum) Vxc. How to do it? An idea is that we should

determine it so that the size of Σ(r, r′, t − t′) − Vxc should be smallest (how to measure the

size?). Or, based on the Landau-Silin’s theory, the QPs contained in G should be reproduced

by H0. In anyway, this ends up with the self-consitent petrurbation theory. For trial Vxc (and

electron density), we have H0; from H0 we can calculate Σ(r, r′, t − t′). Then we have to

determine new Vxc in a method. This is repeated until converged. No unique choice for the

method. Thus we testes some possible ways and now we usually use a standard procedure as

described in Ref. [2].

11

4 LDA/GGA calculations and Plots

Calculations are performed by following steps. These steps are detailed in the following sub-

sections.

To identify a set of files used for a material we calculate, we use an extension to files. For

example, files explained below are with extensions (only lower case allowed) of materials. For

example, ctrls.cu and ctrl.cu. In this case cu is the extension. Any extension works. Other

possible examples are ctrls.lagao3, ctrl.wgantest1, and so on.

1. Write crystal structure file ctrls.* , which contains crystal structure. It can be by hand,

or convert it from POSCAR (in VASP). There is a tool to convert between POSCAR

and ctrls.* (See ecalj/StructureTool/README.txt for the tool. we have vasp2ctrl and

ctrl2vasp. Type them without arguments to see help.)

2. Generate ctrl.* from ctrls.* by a script ctrlgenM1.py, 9

Here ctrl.* is the main control file which contains all required information to perform

calculations. ctrl.* contains not only the content of ctrls.* , but also other information

needed for calculations. If necessary, we edit the generated ctrl.* file before next step.

3. Check crystal structure. lmchk is to confirm the crystal structure (space-group symmetry

and so on). lmchk is applied not to ctrls.* but to ctrl.* . ctrls.* never used in the following

steps.

CAUTION for a known bug! : If a crystal structure is only slightly different from a

structure with higher symmetry, the lmchk may give a wrong crystal symmetry. In such

a case, you have to “standardize structure” by VESTA or some other tools. This occurs

e.g., when we use a structure numerically relaxed by VASP.

4. Run lmfa (calculations of spherical atoms (MT sites) in the cell). It also calculates core

eigenfunctions and valence electron charge to set up initial condition. Then we run main

calculation of LDA by lmf. It repeats iterations, and end up with converged results in

LDA. Main result (electron density satisfying self-consistency) is stored in restart file

rst.* (binary file). It finished within a second.

5. Run LDA/GGA calculations. We can run the LDA/GGA calculation by lmf or lmf-MPIK

(-MPIK means kpoint parallel version).

6. Post processing.

Plot energy band, DOS, PDOS, by running scripts. We can use scripts job band for

band plot (need syml.si file (symmetry line for band plot)). We also have job pdos,

job tdos, job fermi and so on for DOS, PDOS, fermi surfaces. Since we use gnuplot

to plot them, meanings of obtained data is apparently clear.

4.1 Write crystal structure file, ctrls

Let me show some samples of crystal structure files ctrls.* .

Cu: ~/ecalj/lm7K/TESTsamples/Cu/ctrls.cu

------from here ------------------

% const da=0 alat=6.798

STRUC ALAT={alat} DALAT={da}

PLAT= 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0

SITE ATOM=Cu POS=0 0 0

------to here ------------------

GaAs: ecalj/lm7K/TESTsamples/GaAs/ctrl.gaas

------from here ------------------

#id = GaAs

%const bohr=0.529177 a=5.65325/bohr

STRUC

9ctrlgenM1.py exists originally at ecalj/lm7K/ (ctrlgenM1.py was already copied to your BINDIR= defined in
ecalj/Install.ifort in the installation).

12

ALAT={a}

PLAT=0 0.5 0.5 0.5 0 0.5 0.5 0.5 0

SITE

ATOM=Ga POS=0.0 0.0 0.0

ATOM=As POS=0.25 0.25 0.25

------to here ------------------

SrTiO3: ecalj/lm7K/TESTsamples/SrTiO3/ctrls.srtio3

------from here ------------------

%const da=0 au=0.529177

%const d0=1.95/au a0=2*d0 v=a0^3 a1=v^(1/3)

HEADER SrTiO3 cubic

STRUC ALAT={a1} DALAT={da}

PLAT=1 0 0 0 1 0 0 0 1

SITE

ATOM=Sr POS=1/2 1/2 1/2

ATOM=Ti POS= 0 0 0

ATOM=O POS=1/2 0 0

ATOM=O POS= 0 1/2 0

ATOM=O POS= 0 0 1/2

------to here ------------------

Lines starting from ’#’ are neglected as comment lines. Lines starting from ’% const’

define variables and set values (in these cases, da, alat, and bohr, and so on). Then the

variable alat is referred to as {alat}; in the cu case, {alat} means 6.798. Lines not start

from ”#” nor ”%” are main content in ctrls.* . 10

Note that we have two tags of “categories” ”STRUC” and ”SITE”. (“HEADER” tag is

also; but it is just for user’s memo shown in console output). These tags should start from the

first column. Thus ctrls.* is divided into multiple “categories”. In a category, we have “tokens”

such as ALAT, DLAT, PLAT. These under STRUC category. ALAT+DALAT specify unit of

length in this ctrl file. These are in a.u. (= bohr radius=0.529177Å).

The unit cell is given by PLAT (as noted, ALAT+DALAT as unit). In the above exam-

ple of GaAs, three primitive cell vectors specified by nine numbers after PLAT=; they give

three primitive vectors; PLAT1=(0,0,0.5), PLAT2=(0.5, 0.0, 0.5), and PLAT3=(0.5, 0.5, 0).

DALAT is convenient to change lattice constant; but it is fixed to be zero here; thus no effect

in this example.

Note that SITE category can have multiple ATOM tokens. The number of ATOM token

under SITE should be the same as number of atoms in the primitive cell. In the case of GaAs;

SITE contain multiple ATOM tokens. POS= just next to ATOM is taken as subtokens under

ATOM token. 11 In cases, we specify such subtokens as SITE ATOM POS.

In the SITE category, we place atoms (MT names) in the primitive cell. In these cases we

use defaults atomic symbol (MT names) for ATOM. POS is in the Cartesian coordinate (in the

unit of ALAT+DALAT).

To test ecalj, you may make a test directory and copy a ctrls.* to your directory. If you

have VESTA and ecalj/StructureTool/ installed, you can see its structure by

$ viewvesta ctrls.cu

(here $ means command prompt).

NOTE: As written in ecalj/README, you have to install VESTA and viewvesta.

Then set VESTA= at the top of ecalj/Structure/viewvesta, and make softlink

to it. The command viewvesta(~/ecalj/StructureTool/viewvesta.py) generate

POSCAR_cu.vasp first, then send it to VESTA. viewvesta also accept POSCAR_cu.vasp

directly. Except names starting from ctrl and ctrls, viewvesta sends the name

to VESTA directly. We need extension ’.vasp’ to recognize it is written in VASP

10For these variables, we can overlay values when we start programs. For example,’lmf -vdalat=0.1 si’ means that
alat is recorded in save.si file.

11This may looks slightly uncomfortable since the end of range of ATOM is not clearly shown; it end just at the
next ATOM token or new category.

13

format. We have samples in ~/ecalj/StructureTool/sample.

A tool vasp2ctrl converts POSCAR .vasp to ctrls.. “–help” show a small help.

• ecalj/StructureTool/ is not tested well. Not believe it so much... We will fix it

on your request. Another possible way is using cif2cell.

If you have a cif file, run

cif2cell foobar.cif -p vasp --vasp-cartesian --vasp-format=5

And convert POSCAR to ctrls. cif2cell is available from github.

In ctrls.srtio3, we use an expression 1/2 to give POS. We can use mathematical expres-

sion instead of values. Mathematical expressions such as “+ − ∗/ sqrt(...)” are recognized.

(instead of 3**2, use 3^2. Use parenthesis, and no space for an expression). We can use default

atomic symbols (to check default atom name (MT name) type ctrlgenM1.py --showatomlist).

Instead of such default symbols, we can use your own symbol as

SITE

ATOM=M1 POS=1/2 1/2 1/2

ATOM=M2 POS= 0 0 0

ATOM=O POS=1/2 0 0

ATOM=O POS= 0 1/2 0

ATOM=O POS= 0 0 1/2

SPEC

ATOM=M1 Z=38

ATOM=M2 Z=22

ATOM=O Z=8

. Then we have to add extra category SPEC where we set Z number. (You can use Z=37.5

for virtual crystal approximation, however, you can not do it in ctrls now. Edit it in ctrl file.

Such a procedure will be explained in other place.xxx)

This is an example for Antiferro NiO:

#id = NiO

%const bohr=0.529177 a=7.88

STRUC ALAT={a} PLAT= 0.5 0.5 1.0 0.5 1.0 0.5 1.0 0.5 0.5

SITE ATOM=Niup POS= .0 .0 .0

ATOM=Nidn POS= 1.0 1.0 1.0

ATOM=O POS= .5 .5 .5

ATOM=O POS= 1.5 1.5 1.5

SPEC

ATOM=Niup Z=28 MMOM=0 0 1.2 0

ATOM=Nidn Z=28 MMOM=0 0 -1.2 0

ATOM=O Z=8 MMOM=0 0 0 0

In this case, we define Niup and Nidn sites. These are recognized as Ni atom because of given

Z number in SPEC. The subtoken MMOM=Ms,Mp,Md,Mf... re to specify number of magnetic

moments (µB) for s,p,d,f channels (difference of up - down electrons within MT sites) as initial

condition. In this case, we set n(up)-n(down)=1.2 for Niup site for d channel. Even just one

ATOM name is given by yourself, all ATOM in SPEC should be given (in this case SPEC for

O should be given).

We can see other samples in ~/ecalj/lm7K/TESTsamples/*/ctrls.*. (we also have a

sample generator. See later section.) Note that ctrls file is jut in order to generate default ctrl

file in the followings. Not from ctrls but from ctrl, we can start calculations. (thus ctrls is not

needed if we prepare ctrl file directory).

It is possible to add RELAX= 0 0 1 after SITE_ATOM_POS; this means structure relaxation

along z-axis (also need to set DYN category given in Document/Manual/CategoryAndToken.org).

but its defaults are given (but commented out) automatically in the ctrl file generated by the

procedure described in the following section). We detail it in other place xxx.

14

After ctrl.* is generated as shown below, we can run a command lmchk to check weather

crystal structure is correctly given or not. It finish in a second. It show symmetry information,

and so on used in the calculation.

CAUTION!: Positions of atoms are not necessarily fixed by ctrl.* when you restart calcu-

lation with rst.* file, because atomic positions are read from rst.*. We need to pay attention

when we use DYN option because lmf run may save relaxed atomic positions into the rst.*.

As “lmf –help” shows, lmf si --rs=1,1,1,0,0 can read atomic position from ctrl file.

4.2 Generate default ctrl from ctrls by ctrlgenM1.py

To run programs of lm7K (lmfa, lmf, lmchk) in ecalj, we need an input file ctrl.*, which

contains not only structures but also other settings. To generate ctrl.* from ctrls.*, we

have a command ”ctrlgenM1.py” (written in python 3 and call fortran programs(lmfa,lmchk)

internally). Two steps required to complete ctrl file: (i) we give reasonable options when we

run ctrlgenM1.py. Then (ii) we may edit the ctrl file afterward. In anyway, ctrl file is the

starting point of calculations; ctrls is required just in order to generate ctrl.

At first, try ctrlgenM1.py without arguments. It shows help. To generate ctrl from ctrl,

type

$ ctrlgenM1.py cu --nk1=8

Here cu specify ctrls.cu. The option –nk1=8 means the number of division of the Brillouin

zone for integration. It means 8x8x8 division. If we like to use 8x8x4, we have to supply three

arguments –nk1=8 –nk2=8 –nk3=4. The above command gives following console output.

$ ctrlgenM1.py cu --nk1=8

=== INPUT arguments (--help gives default values) ===

--help Not exist

--showatomlist Not exist

--nspin=1

--nk=8

--xcfun=vwn !(bh,vwn,pbe)

--systype=bulk !(bulk,molecule)

--insulator Not exist !(do not set for --systype=molecule)

...

OK! A template of ctrl file, ctrlgen2.ctrl.cu, is generated.

As we see above, options which you specified are shown at the beginning of the console output

(in this case –nk1=8). Others such as –nspin=1 are default settings. If we like to perform

spin-polarized calculations, we add other option ’–nspin=2’ as

ctrlgenM1.py nio --nspin=2 --nk1=6

(NOTE: In the spin-polarized case, we need to set initial condition of size of magnetic moment

at each atoms. Set it in ctrls.* as in the previous section, or edit MMOM of ctrl file

(MMOM=s p d f ...) to be like MMOM=0 0 1.2.). The ctrlgenM1.py generates ctrl file named

as ctrlgenM1.ctrl.cu. To do calculations, copy it to ctrl.cu so that lmf can recognize it.

cp ctrlgenM1.ctrl.cu ctrl.cu

4.3 crystal structure checker: lmchk

Do lmchk to confirm that we can let lmf know correct crystal structure. It also show crystal

structure informaiton, equivalent sites, site index and so on.

lmchk --pr60 cu (--pr# gives more informations if # is number)

Then it reads ctrl.cu. --pr60 is an option of verbose. Bigger number gives more information.

� Lattice info, Space group symmetry operations (in lmf format), and their generators

(these operations can be generated from a few of them.)

See SYMGRP in Document/Manual/CategoryAndToken.org. about how to represent

the operations.

15

� Show atomic positions in ctrl file.

� Tabulate MT radius and distance between atomic sites.

(lmchk –help shows help, but difficult to see. Not need to read it first.)

lmchk is also shows atom (MT site) id (position and class(equivalent positions). This is

needed to interpret PDOS.

CAUTION for a known bug! See 3 in Sec.4.:

4.4 ctrl file

It is not necessary to look into ctrl file first, although some details are explained in the

generated ctrl file. Please compare obtained results by lmf with those by other packages or

literatures; let me know if you find something strange or your questions.

It is necessary to edit ctrl file to use full ability of lmf. For example, LDA+U, atomic

position relaxation, core level spectroscopy, Change setting of default MTO and lo, better

mixing procedure for stable convergence; higher accuracy, and so on.

But a few of ctrl file is easy to modify. Search these words and read explanations embedded

in ctrl file.

(1)XCFUN

(choice of XC—it is not need to repeat ctrlgenM1.py). It is also possible to change number of

k points for sampling, to modify crystal structure slightly, and so on; all things needed are in

ctrl. It is not needed to repeat ctrlgenM1.py again.

(2)SO

To obtain correct dispersion around top of valence at Γ point for GaAs, we need to set SO=1

and NSPIN=2. QSGW calculation (by gwsc) do not allow this option now; Thus we run lmf

(or lmf-MPIK) with such settings changed in ctrl file, after QSGW is converged.

lmf --input shows what can we write in ctrl file. But more than half are not for users,

but for developers (or irrelevant now).

4.5 Run LDA/GGA calculations, and get convergence

Here we show how to get converged results from a ctrl file.

At first, we need initial guess of charge density. It can be given by a super position of

atomic charge density. To obtain the charge density, we solve atoms first. It is by

$ lmfa gaas | tee llmfa

It takes just a few seconds. Here tee is a command of Linux. It keeps console output (standard

output) to a file (llmfa in this case).

Then try

$ grep conf llmfa

. Then you see a key point that

conf:SPEC_ATOM= Ga : --- Table for atomic configuration ---

conf: isp l int(P) int(P)z Qval Qcore CoreConf

conf: 1 0 4 0 2.000 6.000 => 1,2,3,

conf: 1 1 4 0 1.000 12.000 => 2,3,

conf: 1 2 4 3 10.000 0.000 =>

conf: 1 3 4 0 0.000 0.000 =>

conf: 1 4 5 0 0.000 0.000 =>

conf:---

conf:SPEC_ATOM= As : --- Table for atomic configuration ---

conf: isp l int(P) int(P)z Qval Qcore CoreConf

conf: 1 0 4 0 2.000 6.000 => 1,2,3,

conf: 1 1 4 0 3.000 12.000 => 2,3,

conf: 1 2 4 3 10.000 0.000 =>

16

conf: 1 3 4 0 0.000 0.000 =>

conf: 1 4 5 0 0.000 0.000 =>

conf:---

This is an initial electron distribution, and how we divide core and valence. In this case core

charge Qcore are “6 electron for s channel=1s,2s,3s and 12 electron for 2s and 3p”. Qcore is

treated by frozen core approximation. See Sec.2.5 in Ref.??. Qval means electrons for valence

s,p,d channels. The valence channels are 4s,4p,4d,4f (if we set EH=s,p,d,f) in this case The

int(P)z column is for local orbital. Thus we have 3d treated as local orbital. (ecalj allow add

one local orbital per l.)

The isp index means spin (1 or 2), since –nspin=1 (when we invoke ctrlgenM1.py) for

GaAs, no isp=2 exist. In summary we have 4s,4p,4d,3d,4f as valence. This means we use

corresponding number of MTOs and local orbitals.

After lmfa, let us start main calculation.

$ lmf cu

In unix, we ca save console output to llmf by $ lmf cu | tee llmf. As it starts iteration

calculations, it shows similar output again and again (it is a little too noisy now). Then you

end up with self-consistent result as

......

it 8 of 30 ehf= -3304.895853 ehk= -3304.895853

From last iter ehf= -3304.895856 ehk= -3304.895855

diffe(q)= 0.000003 (0.000007) tol= 0.000010 (0.000010) more=F

c ehf=-3304.8958531 ehk=-3304.8958529

Exit 0 LMF

CPU time: 7.024s Mon Aug 19 02:03:19 2013 on

it 8 of 30 means it stop at 8th iteration, although we set maximum number of iteration

30. Note that this number is given by ITER_NIT=30 in ctrl.cu). ehf and ehk are the ground

state energy in Ry. They are calculated in a little different procedure. Although they are

different during iterations, it finally get to be the almost the same number. (But they can be

slightly different even converged for large systems. But you don’t need to care it so much).

NOTE: ehk:Hohenberg-Kohn energy, ehf: Harris-Faulkner energy.

“grep diffe lllmf” shows how the changed of total energy (and charges) during iteration.

diffe mean changes of energy with previous iteration, (q) is for electron density difference as

well. See also save.* file, which only show ehk and ehk obtained by each iteration.

“ grep gap llmf” shows how the band gap changes (in the usual setting), two same numbers

per iteration are shown now.

Thus we do have ground state energy. Although output of lmf is long, most of all are to

monitor convergence (we will shrink it). As long as it converged well, you don’t need to look

into it in detail. Eigenvalues are shown as

bndfp: kpt 1 of 4, k= 0.00000 0.00000 0.00000 ndimh = 122

-1.2755 -1.2008 -1.2008 -0.2052 -0.2052 -0.2052 -0.0766 -0.0766 -0.0766

-0.0174 -0.0174 -0.0174 0.1094 0.1095 0.1095 0.2864 0.2864 0.4170

0.4170 0.4736 0.6445 0.6445 0.6445

This is at k= 0.00000 0.00000 0.00000. (because of historical reason, two same bndfp: are

shown in each iteration; two band path method). “lmf cu| grep -A6 BZWTS” shows the Fermi

energy (for insulator, we see band gap). Deep levels which gives little dependence on k are

core like levels. These are in Ry; zero level is not so meaningful (for convenience, it is simply

determined from the potential at MT boundaries).

rst.* contains is the main output which contains electron density. mix.* is a mixing file

(which keeps iteration history). When you restart lmf again, it read rst.cu and mix.cu. If you

start from lmfa result, please remove them. We can do parallel calculation with lmf-MPIK,

we can invoke it with mpirun -np 8 lmf-MPIK cu. It should give the same answer.

17

4.6 DOS, PDOS plot

We already have script to plot dos, band, and pdos from the result of lmf self-consistent

calculations. We have scripts

job_tdos, job_band, job_pdos

. Look into these scripts, and then you see how to plot them.

For total DOS plot, it is better to check ctrl file; BZ_TETRA=1(this is default; thus make

sure that BZ_TETRA do not exist or BZ_TETRA=1). In addition, it might be better to enlarge

number of k point NKABC in ctrl file to have smooth curve. Then we do

job_tdos cu

This shows total DOS as The range of DOS and division of total DOS is given by DOSMAX

Figure 1: DOS(Cu)

and NPTS in ctrl. Edit tdos.cu.glt for gnulot for your presentation. Please look into job tdos

file in your bin directory. It is a small script.

For PDOS plot,

job_pdos cu

It shows figures (number of figures are number of atoms in the cell) in gnuplot (they are

written in the same position on X-window; move top one a little). The command job_pdos is

a little time-consuming because we use no symmetry to distinguish all lm channels. (PDOS

is not yet implemented for SO=1 case; spin-orbit coupling LṠ is added.) We can edit script

of gnuplot (pdos.site*.*.glt) for your purpose. To plot again, run

gnuplot -persist pdos.site001.cu.glt

In principle, meanings of all data files are shown (see at the bottom of console output about

lm ordering in a line), thus not so difficult to rewrite *.glt. For example, to plot eg and t2g

separately. (NOTE: site id is shown by lmchk).

WARNING: Usually lmf and so on recognize options such as -v option. For example, ’

lmf gaas -vnspin=2’ or ’lmf gaas -vso=1’. This option changes values of variables defined in

% const section. This is recorded in save.* file, and also shown at the top of console output.

However, job tdos and so on, do not yet accept these options. Thus we need to modify ctrl

file without using -v option. Or you need to write these option to these command by hand

(we will fix this problem in future.)

4.7 Band plot

For band plot, we have to set symmetry lines along which we plot eigenvalues. Collections

syml.* are in ecalj/MATERIALS/. (On Jan2017, we prepared automatic generator of syml.*

See Sec.4.7.1). Choose and modify one of them and rename it. I will gather other samples

soon. ’BZ wikipedia’ or something else will help you to interpret it.

To do band plot, we need syml.cu in your directory.

$ cp ~/ecalj/MATERIALS/Cu/syml.cu .

Then check syml.cu; it is

18

21 .5 .5 .5 0 0 0 L Gamma

21 0 0 0 1 0 0 Gamma X

0 (this is the terminator line)

We supply ten data for each lines (integer, three real, three real, two words). First line means,

we calculate eigenvalues for k points from k=(0.5,0.5,0.5) to k=(0,0,0). ”L Gamma” are names

of two end points (.5 .5 .5) and (0 0 0) in this case. These names are used in a gnuplot script

for band plot (bndplot.isp*.glt). Second line means, we calculate eigenvalues for k points from

k=(0,0,0) to k=(1,0,0). 3rd line means calculation just stop here. Units of k are in 2π/ALAT

(or 2π/(ALAT+DALAT) if DALAT exist.). A line starting from ’#’ is neglected (comment line).

To do band plot, run

$ job_band cu

. This is for both nspin=1 and nspin=2 (These scripts try to determine the Fermi energy first.

You may skip it in cases (but need to change the script)).

Figure 2: band plot(Cu)

4.7.1 syml genearator

Jan2017, we added directory ecalj/GetSyml, which contains automatic generator of symmetry-

line file syml.* from ctrl.*). Simultaneously, we plot a picture of BZ showing the sym-

metry lines by matplotlib. See ecalj/GetSyml/README. We use open softwares spglib and

seekpath (these should be installed separetely). We have to add acknoledgement to them (see

README))when we use this generator.

4.8 Useful samples: ecalj/MATERIAL/

Not only ecalj/lm7K/TestSamples (some of them are by older version), We have a material

database in ecalj/MATERIALS/. Move to the directory, and type

$./job_materials.py

Then it shows a help. You see

...

=== Materials in Materials.ctrls.database are:===

2hSiC 3cSiC 4hSiC AlAs AlN AlNzb AlP AlSb Bi2Te3 C

CdO CdS CdSe CdTe Ce Cu Fe GaAs GaAs_so GaN

GaNzb GaP GaSb Ge HfO2 HgO HgS HgSe HgTe InAs

InN InNzb InP InSb LaGaO3 Li MgO MgS MgSe MgTe

Ni NiO PbS PbTe Si SiO2c Sn SrTiO3 SrVO3 YMn2

ZnO ZnS ZnSe ZnTe ZrO2 wCdS wZnS

...

19

. For these simple materials (now 57 materials), input files can be generated, and run

them automatically by a command ./job_materials.py below. The ctrls are stored in

ecalj/MATERIALS/Materials.ctrls.database in a compact manner (in addition, options

passed to ctrlgenM1.py and options to lmf-MPIK are included). See ecalj/MATERIALS/README

about how to add new material to it; it is not difficult. The command ./job_materials.py

gives ctrls.* for these materials from descriptions in the Materials.ctrls.database. And then

it generates ctrl file by calling ctrlgenM1.py internally, and run lmfa lmf-MPIK successively

(when no –noexec).

Try ./job_materials.py Fe --noexec. (not fe but Fe as it shown above) at ecalj/MATERIALS/.

Then it makes a directory Fe/ and set ctrl.fe (also ctrls.fe) in the directory. Without ’–noexec’,

it does calculation for Fe successively. As for NiO and Fe, we see that ./job_materials.py

gives SPEC ATOM MMOM in generated ctrls and ctrl files. (Look into ctrls.fe; we need

SPEC section when we add MMOM.)

Try job_materials.py GaAs Si.

Then directories GaAs/ and Si/ are generated. See save.* files containing total energies

iteration by iteration. Starting from ctrl.* in these directory, the command perform DFT

calculations (Console output is stored in llmf, save.* gives total energies. rst.* contains

self-consistent density, from which we can calculate energy bands and so on).

“./job_materials --all --noexec” generates ctrls and ctrl files of these materials. “./job_materials --all”

do self-consistent LDA calculations for materials (it takes an hour or more. To change the

number of cores for lmf-MPIK, set option -np (number of core). See help of ./job_materials

(type this without arguments).

To make band plot and so on for Fe, follow instructions already explained.

$./job_materials.py Fe (and need to type return)

(If you like start over, remove Fe/ under it first).

$ cd Fe

$./job_materials.py fe

(but it might be better to do --noexec, and observe Fe/ctrls.fe and

Fe/ctrl.fe first. grep conf llmf shows the initial electron distribution).

$ cat save.fe (this shows total energies of each iteration. ’c ’ at

the first column gives converged result. ’h ’ is from atm file.)

If it does not ends with ’c ...’ line, something strange

occurs. see llmf (console out put of lmf is saved to llmf).

$ cp ../syml.fe .

$ job_band fe -np 4

(As I said, this shell script do not yet accept

options to lmf. Look into the script).

(This calculate fermi energy first for safe; it takes

some time)

$ job_tdos fe

$ job_pdos fe (as I said, this supress space-group symmetry, thus time consuming).

At the end of job_pdos, we show a help which pdos data is where (In pdos file, we have 26

numbers a line; first is energy, 2-26 are pdos for s,p,d,f,g; which is which are shown in the help).

See joblmf file also (it contains options to invoke lmf. This is shown in save.*. In principle,

options in joblmf should be passed to band plot and so on. But not yet implemented (it is not

so difficult; I have to do it).

After doing ./job_materials foobar, you may like move it back to original... In such a

case, git works. At ecalj/, do

$ mv MATERIALS MATERIALS.bk

$ git checkout MATERIALS

Then you can see MATERIALS/ is moved back to just downloaded one.

4.9 How to add spin-orbit coupling?

In the LDA level calculations, we can use

20

SO=0 (no SO), SO=1(LdotS), or SO=2(LzSz) schemes.

However, SO=1 is not the non-collinear method

(z-direction is assumed to be spin direction; in cases

we may need to primitive cell so that the z-direction

is the spin direction).

Within LDA, we have two possible ways.

(A) Do LDA and/or QSGW with SO=0 first.

Then apply the spin-orbit coupling by perturbation.

or (B) do self-consitent LDA calculations with SO=1 (or =2).

For semiconductors, we think you observe little differences.

Let me explain the case (A).

After converged with nspin=1, create new directory and copy

ctrl.gas, rst.gas, sigm.gas, QGpsi,

to it. Then we set

nspin=2

METAL=3 (usually this is default)

SO=1 (this is ldots calculation off-diagonal elements included).

Q=band (we do not change potential.)

in ctrl.gas.

Then run

>lmf gas >& llmf_SO

You can see "band gap with SO" by

> grep gap llmf_SO.

Then you can see two same lines.

VBmax = 0.101949 CBmin = 0.236351 gap = 0.134402 Ry = 1.82786 eV

VBmax = 0.101949 CBmin = 0.236351 gap = 0.134402 Ry = 1.82786 eV

(two lines per iteration is shown in metel mode).

This is the band gap with SO as a first-order perturbation

on top of the "QSGW without SO". When you use ctrl fil e generated by

ctrlgenM1.py. You can do the above procedure with

>lmf --rs=1,0 gas -vnit=1 -vso=1 -vnspin=2 -vmetal=3 --quit=band

(--rs=1,0 read rst.gas but not write rst.gas. Run lmf --help.

The switch -v (-vso=1 in this case) replaces so=0 with so=1.

This is recorded in save.gas file).

For band plot, you can use the same procedure

for the case without SO. (Look into the shell script job_band.

You have to modify it so that

’--rs=1,0 gas -vnit=1 -vso=1 -vnspin=2 -vmetal=3 --quit=band’

is added to arguments for >lmf --band:syml ...).

(--quit=band is not necessary if we like to renew eigenfunctions

self-consistent. Anyway we expect little differences.)

\noindent QSGW with SO:\\

For given sigm file, it is possible to attain self-consisency with SO=1(or=2) with keeping sigm (then we do not set Q=band).

However, this imply that Vxc is fixed in QSGW,

it is not necessary better than the above procedure.

4.10 PROCASR (VASP format) generator

PROCASR mode for lmf (not yet in lmf-MPIK) Band weight decomposition. (Size of circles

show the size of components. Superposed on band plot). See ecalj/MATERIALS/MgO_PROCAR/README,

21

May19.2014

4.11 efermi.lmf

This is generated by lmf(lmf-MPI), which is used in the job band.

4.12 Effective mass calculation

New band plot and effective mass calculation (curvature):

(see sample at ecalj/MATERIALS/mass_fit_test/ and its README).

We now read syml.* in lm7K/fp/bndfp.F. Thus job_band is changed

(nspin=1 or nspin=2 is automatically choosed by job_band command).

We do not use plbnd anymore. If necessary, you can modify

"writeband" subrouitne in lm7K/fp/bndfp.F by yourself.

Follow steps to get effective mass...

1.

New syml read label of k point. It is shown by the gnuscript

file "bandplot.glt". Type "gnuplot -p bandplot.isp1.glt" and so on,

when you like to remake band plot.

2.

New syml allow a special input suitable to determine effective mass

for semiconductor. An example of new syml is (this is a case of GaAs)

------ syml example start ------------------

#NOTE: ndiv2, ninit2 nend2 etolv etolc are for mass mode.

#ndiv qleft(1:3) qright(1:3) llabel rlabel ndiv2 ninit2 nend2 etolv(Ry) etolc(Ry)

5 0 0 0 .5 .5 .5 Gamma L 257 1 32 0.1 0.01

5 0 0 0 1. 0 0 Gamma X

5 0 0 0 .75 .75 0 Gamma K 257 1 32 0.1 0.01

------- end ----------------------

New feature is start from the next columns of symmetry points labels.

In this example, 257 means a line connecting 0 0 0 (Gamma) and .5 .5 .5 (L) is divided

into 256. Then we only calculate from the 1st point to the 32th point

among 257 points.

Then we see not only band*.spin*, but also

we have files such as "Band001Syml001Spin1.dat"

files which contains eigenvalues for selected bands, that is,

we make a table of detailed plot of energy bands

whose energy E at Gamma (exactly speaking, at

left-end point), is evaltop-etolv (Ry) < E < econtop + etolc(Ry).

(As its head line shows, Band*Syml*.dat file contains data

isyml,iq, ib,isp, QPE-EF, QPE-QPE(start), |q|, mass=2*2*(QPE-QPE(start))/|q|**2).

here QPE(start) is QPE at the left-end of sym line.)

This sample is only for Gamma-L and Gamma-K.

Let us use this example for GaA and run job_band.

(e.g., job_band gaas -np 2 -vnspin=2 -vso=1;

note that -vfoobar=xxx replace value of foobar with xxx in ctrl.gaas)

Then you can see not only bandplot.isp1.glt.

Then you can see usual energy bands plot in addition to the dense energy bands

superposed on it. The dense energy bands are controlled by

the part "257 1 32 0.1 0.01". In the current version, set all lines

22

of etolv and etolc are the same.

There are useful data, not only the eigenvalues in "Band001Syml*Spin*.mass"

files. But, anyway, we have to determine effective mass from the eigenvalues

on the dense symmetry mesh.

3.

Least square fit by gnuplot.

We have an example is at ~/ecalj/MATERIALS/mass_fit_test

Look into ./job and run it.

See README in it.

For your convenience, we have dE/dk in the bnd*.spin* files.

This is useful to determine the Fermi surface.

See the efermi.lmf to read the Fermi energy.

4.13 density and |eigenfunction|2 plot

We can generate density and
∑
n |Ψkn(r)|2 by --density mode (after 18mar2016) Usages are

>mpirun -np 24 lmf-MPIK si --density

This is for density. We have smrho.xsf, and rho1mt*(1st components) and rho2mt*(2nd

components).

>mpirun -np 24 lmf-MPIK si --density,iq=1,ib=5

iq=1 means Gamma point. See index shown by the console output of lmf. The index ib is

the band index.

>mpirun -np 24 lmf-MPIK si --density,iq=1,ib=5,6,7

In this case we have sum for ib=5,6,7.

Use xcrysden as

>xcrysden --xsf smrho.xsf

Then open menu ’Tools→DetaGrid’. Then plot isosurface and/or planes. For example, you

need to set isovalue, and/or turn on ’display color plane’ buttons.

4.14 LDA+U

There is a document of file://../BACKUP/MarksOriginalDoc/fp.html#ldaplusu. But I in-

clude all required things here. Usage is slighly changed. We have examples at

~/ecalj/MATERIALS/erasldau,GdNldau. I am going to add some samples.

To run LDA+U calculaiton, we need two extra steps in addition to usual LDA calculaitons:

Step.(1) Set three tokens in ctrl file. LDA+U type, Parameters U and J.

Step.(2) Prepare occnum.ext (initial condition of diagonal part of the density matrix).

Let us explain one by one.

Step.(1)

For the point (1), we have a new line in SPEC ATOM sections. In ecalj/MATERIALS/erasldau,

it is

IDU= 0 0 2 2 UH= 0 0 0.1 0.632 JH= 0 0 0 0.055

The SPEC ATOM IDU token tells lmf that no U is to be added to the s or p channels, but

that a U is to be added to the d and f channels. IDU=2 specifies LDA+U functional style 2;

this is the ”Fully Localized Limit” described in Liechtenstein, PRB 52, R5467 (1995)). IDU=1

specifies the ”Around Mean Field” functional (Petukhov, PRB 67, 153106 (2003)). U=0.1 Ry

23

file://../BACKUP/MarksOriginalDoc/fp.html#ldaplusu

is included on the d orbital, and U=0.632 is included on the f orbital. Additionally J=0.055

is put on the f orbital.

Density matrix:

It is stored in dmats.ext. In principle, the density-matrix is read from and written to the

file dmats.ext. Thus, in principle, we need a dmats.ext as an initial condition. However,

we usually use diagonal-only density matric occunum.ext instead. If no dmats.ext, we read

occnum.eras instead. We explain it afterwards. Two density-matrices (for each spin) are

written to this file in a (2l+1) by (2l+1) block for each l block for which a U is defined.

dmats.ext is an ASCII file which you can read, and it’s quite useful to interpret what’s going

on. The diagonal parts are the occupation numbers and are the most important. It is in the

spherical harmonics (not the real harmonics). The harmonics is defined in the ecaljdetail.tex.

Note that in the LDA case, complete information is contained in the density, stored in

file rst.ext. In the LDA+U, the Density-matrix is stored in file dmats.ext. Thus complete

information is contained in the combination of rst.ext and dmats.ext.

The density matrix is printed out in the standard output. It can be represented on the

real harmonics. To check it, run

>lmf eras --quit=dmat

. This stops promptly without side effect. Then the symmetrized density matrix represented

on the spherical harmonics and real harmonics are shown (we make symmetrization for the

given SYMOPS in ctrl file).

Step.(2)

Usually it is too tedious to supply dmats.ext itself. Instead, you can supply an ”occupa-

tion numbers” file occnum.ext, which is a starting guess for the density-matrix (its diagonal

part). occnum.ext has one line of (2l+1) numbers for the occupation numbers of the first

spin, following by a line with the occupation numbers for the second spin. In the case of

ecalj/MATERIALS/erasldau, we have occnum.eras.

Er has 11 f electrons, 7 of which go into the majority channel and 4 into the minority

channel. There is some choice in which m states to fill and which to keep empty. A key point

is that the self-consistent solution you end up with will depend on this choice. The ErAs test

uses the following input file for occnum.eras :

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1 1 1

0 1 1 1 1 0 0

The first and second lines are occupation numbers for the majority and minority d channel;

the third corresponds to the majority f channel where all states are taken to be filled. The last

line corresponds to the minority f channel. In this case, m=-2,-1,0,1 are filled and m=-3,2,3 are

empty. As the script notes, different choices of starting occupation numbers lead to different

self-consistent solutions. The one with the lowest energy is that which satisfies Hund’s rule

(m=0,1,2,3 filled and m=-3,-2,-1 empty).

It is possible to use ’real harmonics (see ecalj/fpgw/exec/jobpdos for definition)’ instead

of ’spherical harmonics’. As for occnum.ext, you can use

% real

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1 1 1

0 1 1 1 1 0 0

. Here ’% real’ means on the basis of real harmonics. Check whether this is correctly supplied

or not by >lmf --quit=dmat eras.

To run with spin-orbit coupling, set HAM SO=1, then run ¿grep IORBTM -A20 llmf ,

here llmf is the standard output of lmf. Then you see orbital moments at ’IORBTM’.

NOTE for gwsc:

When you just like to generate initial condition for gwsc by LDA+U, you have to exit right

after sigm generated (add exit right after $echo_run echo == $ix ’iteration over==’ in

24

gwsc). Then gwsc stops right after sigm generated. Then you have to remove or comment out

IDU (or set all zero) in ctrl file. Then run lmf together with obtained sigm file. This is because

sigm contains LDA+U kind of effect. After this, check energy band (jobband) for check. And

run usual gwsc— then you can perform QSGW with the LDA+U’s initial condition.

4.15 QSGW after LDA+U

We modified lm7K/subs/m_rdctrl.F(feb2019), so that An option which makes “QSGW after

LDA+U” easy to run. A line for atom section

IDU=0 0 0 12 UH=0 0 0 .7 JH=0 0 0 0

works in ctrl file. Here 12=10+2 instead of 2 means that we set UH=JH=0 when sigm.* exits.

Thus we can perform QSGW(without U term) calculaiton, after LDA+U calculaiton. This

can be convenient for cases when we control the initial condition of QSGW.

4.16 partially occupied core-hole

See file://../BACKUP/MarksOriginalDoc/fp.html#ldaplusu around. Search the keyword

ldau in fp/lmfp.F → sudmtu.F which read occnum.gdn.

Core-hole procedure is one of the important procedure. An example setting for Nd case is

ATOM=Nd Z=60 R=3.00

C-HOLE=4f C-HQ=-11 P=6.5,6.5,5.5,5.2 <-- NOTE: this line is added

1. C-HOLE=4f means that 4f core is to set “core hole”.

2. P=6.5,6.5,5.5,5.2 is to set principle (fractinal) quantum number explicitly for valence

electrons. To set this, try lmfa nd|grep conf first. The you can see the electronic

configulation of an atom. Key point here is to set “5.2” for f channel. Thus 4f is treated

as core and 5f as valence. Fractional parts (0.2 of 5.2) means the radial funciton contains

nodes as 5f and closer to the energy right on the change of 4f to 5f. If 5.9, it is closer to

the enrgy almost have noded of 6f.

3. C-HQ means that corehole is -11. Thus we have only 14-11=3 electrons for 4f (spherically

occupied).

4. Run lmfa. If it does not show that freeat (warning) atom not neutral, it is the

neutral atom. You can also chage the message tagged by Add core hole: Simultaneously

you can control initial total valence charge by Q=...

Very recently (aug2019), I fixed a bug of EFERMI(fermi energy for GW calculaiton, given

by fpgw/main/heftet.m.F) for the case C-HOLE is supplied.

5 How to run QSGW calculation?

In the QSGW, we calculate a non-local exchange-correlation potential V xc(r, r′), by a procedure

of GW calculation (very time-consuming part). Then difference V xc(r, r′)V −V LDA
xc (r)δ(r−r′)

is stored into sigm.* file. The potential file sigm is a key to perform QSGW calculations as

seen in Fig.6. The sigm contains static non-local potential ΣQSGW − V LDA
xc .

Then, we again do one-body calculation by lmf (or lmf-MPIK) where we add this sigm to

one-body potential ; when we run lmf or lmf-MPIK(k-parallel mpi version), sigm is read and

added to the one-body potential if we have HAM RDSIG=12 in ctrl.*. Thus this means that

we replace V LDA
xc (r)δ(r− r′) with V xc(r, r′).

This iteration cycle is performed by a script “gwsc” as we explain later on. (In the default

setting of ctrl.* file, lmf try to read sigm.* file as long as it exists. If not, do lmf or lmf-MPIK

calculation.

To start QSGW calculation by gwsc, we need not only ctrl.si, but also another input file

GWinput. Its template GWinput.tmp can be generated by the Step.2 as follows.

25

file://../BACKUP/MarksOriginalDoc/fp.html#ldaplusu

As a summary, you have to follow steps below in order to perform QSGW calculation.

Step 1. Perform from the Step.1 thru the Step.4 (up to lmfa) in Sec.4.5. (as same as the case of

LDA/GGA).

You don’t need to perform LDA calculation in advance, since gwsc perform LDA/GGA

calculation at its beginning. (It means that we start from the one-body Hamiltonian H0

in LDA/GGA as initial condition.In cases, LDA/GGA give poor initial conditions for

QSGW; in such a case, we may need another trick to prepare starting point.).

[Caution: We have to use the same LMXA (l in the expansion of eigenfunctions in each

MT) for all the MT spheres. (This is due to historical reason; we may need to fix this.)]

xxx need to explain LMA xxx

Step 2. Run the script mkGWIN lmf2.

The purpose of this script is to get GWinput.tmp. Other files generated are not used in

the following stage.

Step 3. Edit GWinput.tmp and save it as GWinput.

GWinput is the input file describing the computational conditions for GW calculation.

Usually, the default setting gives reasonable results. To reduce computational time,

we may use lcutmx(atom)=2 for oxygen sites (this may be also other small atoms.).

grep lcut GWinput -A1 shows lcutmx for each atomic sites) These step 2. and step 3.

are just only to get GWinput.

Step 4. Run the script gwsc.

5.1 GWinput

In order to perform QSGW, one another input file GWinput (no extension) is necessary in

addition to ctrl.*. Thus all input files for QSGW is just two files, ctrl.* and GWinput. A

template GWinput can be generated by a script mkGWIN_lmf2. You may have to modify it in

cases for your purpose.

Let us start from ctrls.si;

#id = Si

%const bohr=0.529177 a= 5.43095/bohr

STRUC

ALAT={a}

PLAT=0 0.5 0.5 0.5 0 0.5 0.5 0.5 0

SITE

ATOM=Si POS=0.0 0.0 0.0

ATOM=Si POS=0.25 0.25 0.25

. Do ctrlgenM1.py si --tratio==1.0 --nk1=6 and copy ctrlgenM1.ctrl.si to ctrl.si. NOTE:

the option --tratio=1.0 means we use touching MT; this can be checked by lmchk si; since

defaults is almost unity (--tratio=0.97), this is irrelevant, just to explain options.

We have to write GWinput. The default is given automatically by a command mkGWIN_lmf2;

$ lmfa si (lmfa is needed to do in advance).

$ mkGWIN_lmf2 si

......

== Type three integers n1 n2 n3 for Brillowin Zone meshing for GW! ==

n1=

Then it pause and ask numbers. You have to type three numbers as 2+ return + 2+return+2

return.

== Type three integers n1 n2 n3 for Brillowin Zone meshing for GW! ==

n1= 2

n2= 2

n3= 2

2 2 2

26

...(skip)...

OK! GWinput.tmp is generated!

Generated file is GWinput.tmp; you have to copy it to GWinput.

$ cp GWinput.tmp GWinput

These ’2 2 2’ you typed is reflected in a section ’n1n2n3 2 2 2 ’ in GWinput. This means 2x2x2

(8 points in 1st BZ). You can edit it, and change it to e.g. ’n1n2n3 4 4 4’ if you like to calculate

self-energy on dense BZ mesh 8x8x8.

The template of GWinput is usually not so bad. But it may give a little expensive setting

(or not very good enough in cases).

NOTE: GWinput allows some options. Some newer points are

1. For the atoms without 3d involved, you can use lcutmx=2. Typically we use lcutmx=2

for oxygen.

2. GaussianFilterX0 0.0001 given in GWinput is effective to stabilize the convergence for

metals.

5.2 Run gwsc script

Let us perform QSGW calculation. For this purpose, we use a script gwsc. We need to do

lmfa in advance. Then do (not need to do lmf);

gwsc (number of iteration+1) -np (number of nodes) (id of ctrl)

If (number of iteration+1)=0, it gives one-shot calculation from LDA. But it is different from

the usual one-shot; since it calculates off-diagonal elements of self-energy also, we can plot

energy band dispersion. In cases (for usual semiconductors), it can give rather reasonable

results in comparison with experiments from practical point of view.

This is an example of one iteration of QSGW cycle. (now a little different but essentially

similar)

takao@TT4:~/ecalj/test1$ gwsc 0 -np 2 si

gwsc 0 -np 2 si

START gwsc: ITER= 0, MPI size= 2, TARGET= si

--- No sigm nor sigm.$TARGET files for starting ---

---- goto sc calculation with given sigma-vxc --- ix=,0

No sigm ---> LDA caculation for eigenfunctions

Start mpirun -np 2 /home/takao/ecalj/TestInstall/bin/lmf-MPIK si > llmf_lda

OK! --> Start echo 0| /home/takao/ecalj/TestInstall/bin/lmfgw si > llmfgw00

OK! --> Start echo 1|/home/takao/ecalj/TestInstall/bin/qg4gw > lqg4gw

OK! --> Start echo 1|mpirun -np 2 /home/takao/ecalj/TestInstall/bin/lmfgw-MPIK si> llmfgw01

OK! --> Start /home/takao/ecalj/TestInstall/bin/lmf2gw >llmf2gw

OK! --> Start echo 0|/home/takao/ecalj/TestInstall/bin/rdata4gw_v2 > lrdata4gw_v2

OK! --> Start echo 1| /home/takao/ecalj/TestInstall/bin/heftet > leftet

OK! --> Start echo 1| /home/takao/ecalj/TestInstall/bin/hchknw > lchknw

OK! --> Start echo 3| /home/takao/ecalj/TestInstall/bin/hbasfp0 > lbasC

OK! --> Start echo 3| mpirun -np 2 /home/takao/ecalj/TestInstall/bin/hvccfp0 > lvccC

OK! --> Start echo 3| mpirun -np 2 /home/takao/ecalj/TestInstall/bin/hsfp0_sc > lsxC

OK! --> Start echo 0|/home/takao/ecalj/TestInstall/bin/hbasfp0 > lbas

OK! --> Start echo 0| mpirun -np 2 /home/takao/ecalj/TestInstall/bin/hvccfp0 > lvcc

OK! --> Start echo 1| mpirun -np 2 /home/takao/ecalj/TestInstall/bin/hsfp0_sc > lsx

OK! --> Start echo 11| mpirun -np 2 /home/takao/ecalj/TestInstall/bin/hx0fp0_sc > lx0

OK! --> Start echo 2| mpirun -np 2 /home/takao/ecalj/TestInstall/bin/hsfp0_sc > lsc

OK! --> Start echo 0| /home/takao/ecalj/TestInstall/bin/hqpe_sc > lqpe

OK! --> == 0 iteration over ==

OK! --> Start mpirun -np 2 /home/takao/ecalj/TestInstall/bin/lmf-MPIK si > llmf_gwscend.0

OK! ==== All calclation finished for gwsc 0 -np 2 si ====

27

Here echo (integer) is readin in at the beginning of the code. To see it, please look into gwsc

script (gwsc is at ecalj/fpgw/exec/ and copied to your bin/ by make install2). In anyway, this

console output shows calculations finished normally.

Now we get rst.si and sigm.si file which contains (static version of) self-energy minims

V LDA
xc . What we did is the one-shot GW from LDA result; but note that we calculate not only

diagonal elements but also off-diagonal elements.

We can write energy dispersion (band plot) in the same manner in LDA. To do it, we need

rst.si, sigm.si, ctrl.si, QGpsi. (but QGpsi is quickly reproduced). After you have syml.si (e.g.

in ecalj/MATERIALS/), Do

$ job_band si

Figure 3: Si, one-shot GW with off-diagonal elements

You can observe large band gap as shown in the Fig.5.2. (To see it again, gnuplot bnds.gnu.si -p.

All plots are in gnuplot, thus it is easy to replot it as you like).

We have QPU file (and also QPD for spin=2), which contains content of the diagonal part

of self-energy. It will be explained elsewhere.

You can make total DOS and PDOS plot by

$ job_tdos si

$ job_pdos si

CAUTION:pdos plot is not allowed for so=1. (even tdos–¿ ask to t.kotani.)

To get final QSGW results, we have to repeat iteration until eigenvalues are converged.

Note that total energy shown by console output llmf (and also shown in save file) is not so

meaningful in the QSGW; we just take it as an indicator to check convergence. Let us repeat

5 iteration more. ”-np 2” means one core to use.

$ gwsc 5 -np 2 si

START gwsc: ITER= 5, MPI size= 2, TARGET= si

--- sigm is used. sigm.$TARGET is softlink to it ---

---- goto sc calculation with given sigma-vxc --- ix=,0

we have sigm already, skip iter=0

---- goto sc calculation with given sigma-vxc --- ix=,1

...(skeip here) ...

OK! --> == 5 iteration over ==

OK! --> Start mpirun -np 2 /home/takao/ecalj/TestInstall/bin/lmf-MPIK si > llmf_gwscend.0

OK! ==== All calclation finished for gwsc 0 -np 2 si ====

28

Note that we do skip 0th iteration (it is for one-shot from LDA) since we start from rst.si and

sigm.si given by one-shot LDA. Thus we do just five iterations. Information of eigenvalues are

in QPU.(number)run files. (for magnetic systems with nspin=2), wee have QPD.(number)run

also). Check it by ls;

$ ls QPU.*run

QPU0.run QPU.1run QPU.2run QPU.3run QPU.4run QPU.5run

(These are overwritten when we again repeat gwsc; be careful.) Note that QPU0.run was old

one when you did 1-shot GW from LDA at the beginning. In anyway *.0run are confusing

files; remove them).

In order to check convergence calculations going well during iteration, do

$ grep gap llmf*

This shows how band gap changes in llmf.*run files. In metal cases, we need to compare QPU

file, magnetic moment or grep ’[xc] save.*; this shows end of lmf iteration. Energy is not

so meaningful but can be indicator to convergence.

Let us check convergence of the QSGW calculations. For this purpose, it is convenient to

take a difference of QPU(QPD) files by a script dqpu. These files are human readable. To

compare QPU4.run and QPU5.run, do

$ dqpu QPU.3run QPU.4run

Then we see a list of numbers (these are the differences of values in QPU files). Then it shows

at the bottom as

Error! Difference>2e-2 between: QPU.4run and QPU.5run

: sum(abs(QPU-QPD))= 0.05736

but you don’t need to care it so much. You rather need to check the difference of values. I

can say most of all difference (especially around the Fermi energy are) are almost 0.00eV or

0.01eV, we can judge QPEs are converged. If not converged well, you may need to repeat gwsc

again. (when the size of two QPU files are different, dqpu stops.)

Figure 4: band plot(Si, QSGW one-shot test) and band(Si) (GGA)

5.3 Spectrum function: How to calculate 〈qn|Σ(ω)|qn〉
We have an example at ecalj/MATERIALS/SiSigma/, where you can just type job. It calls a

shell script gwsigma, which is just a modification of gwsc for spectrum function plotting. If

you have sigm.*, it will automatically read it as in the case of gwsc.

By the script gwsigma, we calculate the diagonal elements 〉ψ(q, n)|σc(ω)|ψ(q, n)〈. Thus we

need to set q and band index n for which we calcualte. In addition, we need to set resolution

of ω.

1. Set <QPNT> section. This section is to set the q point, and band index for which we

calculate the self energy. In addition, energy mesh for plotting is set.

29

Figure 5: band(GaAs), QSGW (test case)

(A) Set q point set

If you set

*** all q -->1, otherwise 0; up only -->1, otherwise 0

1 0

You will have self-energy for all irreducible k points. This may be needed for A(omega).

or

You have to set all q points as

*** q-points, which shoud be in qbz.,See KPNTin1BZ.

3 <--- number of readin q point

1 0.0000000000000000 0.0000000000000000 0.0000000000000000 <--1st number is irrelevant

2 -0.5000000000000000 0.5000000000000000 0.5000000000000000

3 0.0000000000000000 0.0000000000000000 1.0000000000000000

To know allowed q points on regular mesh point, run the command "mkGWIN_lmf2", then

supply n1,n2,n3. The templete of GWinput.tmp contains all possible q points. Edit it.

NOTE:Anyq option can allow you to specify any q points by shifted mesh technique.

(if necessary, but only for some special purpose).

(B) Band index set

It is specified by the section

*** no. states and band index for calculation.

2

4 5

means the self-energy for band index 4 and 5. Just two bands.

If you like to plot self energy from 1 through 8, use

*** no. states and band index for calculation.

8

1 2 3 4 5 6 7 8

If you need 17 bands for example, it should be 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

in addition to 17 (number of bands at the first line).

30

(C) energy mesh set

At the bottom of <QPNT> section, we have

0.01 2.0

Two real number should be supplied.

These are dwplot and omegamaxin, read in hsfp0.m.F by a line

read (ifqpnt,*,err=2038,end=2038) dwplot,omegamaxin

dwplot (=0.01 Ry) is mesh for self energy.

omegamaxin=(2.0 Ry) means the range "-2 Ry to 2 Ry" for self-energy plot.

Note that imaginary part of Sigma is given as the comvolution of ImW(omega) and the pole of Green’s function

(esmr in GWinput gives energy smearing of the pole). Resolution for Im W (near omega=0) is by dw in GWinput.)

I think that the reolution of self-energy is ~ 0.05 eV in the default setting.

This is because {\tt dw} \sim {\tt esmr} \sim 0.05 eV.

2 Run gwsigma. This will run

echo 4| mpirun -np 24 hsfp0,

after dielectric funcition is calculated.

Then we have SEComg.UP (DN) files, Look for file handle, ifoutsec,

for the file in fpgw/main/hsfp0.m.F to see format for the file.

(not hsfp0.sc.m.F but hsfp0.m.F). Search a line

open(ifoutsec,file=’SEComg’//sss) (around hsfp0.m.F L1052)

You can find that we use folloing lines to plot SEComg.*.

write(ifoutsec,"(4i5,3f10.6,3x,f10.6,2x,f16.8,x,3f16.8)")

& iw,itq(i),ip,is, q(1:3,ip), eqx(i,ip,is),

& (omega(i,iw)-ef)*rydberg(), hartree*zsec(iw,i,ip) !,sumimg ----------------

This means we use energy in eV.

iw: omega index

itq(iq): band index specified by <QPNT>

ip: k point index specified by <QPNT>

is: spin index

q: q vector (cartesian in 2pi/alat)

eqx: eigenvalue in eV. (I think relative to the Fermi energy)

(omega(i,iw)-ef)*rydberg(): omega relative to the Fermi energy

hartree*zsec(iw,i,ip): Self energy. real and imaginary part.(complex, two values)

You can only repeat echo 4| mpirun -np 24 hsfp0

when you change setting in <QPNT> section.

3 Example. There is an example MATERIALS/SiSigma/

plot ’SEComg.UP’ u ($9):($10) w l,’’ u ($9):($11) w l

can give a plot for Re (Sigma_c(omega)) and Im(Sigma_c).

9th: energy in eV (omega(i,iw)-ef)*rydberg()

10th: real part Re hartree*zsec(iw,i,ip)

11th: imag part Im hartree*zsec(iw,i,ip)

4 To get integrated spectrum function (DOS), we need to superpose all the spectrum

function (All q points and all band index). Be careful about the degeneracy (multiplicity)

for each q points. You have to build it from SEComg file. To know the multiplicity, search

following lines ofkeyword Multiplicity in the console output of qg4gw (lqg4gw).

Anyway, consider about “is it worth to do?” To confirm your result, use sum rule (sum

of spectrum weight). And pay attention to the relation between real and imag parts

(Hilbert transformation).

31

6 gwsc script to perform QSGW

6.1 outputs of gwsc

Figure 6: Shell script gwsc to perform QSGWcontains an iteration loop to make sigm (and eigen-
values, eigenfunctions) self-consistent. The iteration loop is written in ecalj/fpgw/exec/gwsc (a
bash script). Exactly speaking, we have to pass all the required data (not only eigenvalues and
eigenfunctions, but also crystal structure, q+G vectors, symmetry information and so on) to GW
part. The purpose of the GW part is to calculate ΣQSGW − V LDA

xc .

When gwsc runs normally, it gives console output as follows. This is a case for ctrl.gaas for

>gwsc 10 -np 24 gaas

. Without arguments, typing gwsc shows usage as

>An example of usage: gwsc 5 -np 4 si, where 5 means 5+1 iterations

. We recommend you do look into the script gwsc. It uses run arg, which is a special subroutine

of bash; but not so difficult to understand it. (In the followings, we assume /home/binx/ is

your bin directory at which we have all binaries for ecalj.)

START gwsc: ITER= 10, MPI size= 24, TARGET= gaas
--- No sigm nor sigm.$TARGET files for starting ---
---- goto sc calculation for given sigma-vxc --- ix=,0
No sigm ---> LDA caculation for eigenfunctions
OK! --> Start echo --- | mpirun -np 24 /home/binx/lmf-MPIK gaas > llmf_lda
OK! --> Start echo 0 | /home/binx/lmfgw gaas > llmfgw00
OK! --> Start echo 1 | /home/binx/qg4gw > lqg4gw
OK! --> Start echo 1 | mpirun -np 24 /home/binx/lmfgw-MPIK gaas > llmfgw01
OK! --> Start echo --- | /home/binx/lmf2gw > llmf2gw
... (preparation stage ends here; start main stage) ...
OK! --> Start echo 0 | /home/binx/rdata4gw_v2 > lrdata4gw_v2
OK! --> Start echo 1 | /home/binx/heftet > leftet
OK! --> Start echo 1 | /home/binx/hchknw > lchknw
OK! --> Start echo 3 | /home/binx/hbasfp0 > lbasC
OK! --> Start echo 3 | mpirun -np 24 /home/binx/hvccfp0 > lvccC
OK! --> Start echo 3 | mpirun -np 24 /home/binx/hsfp0_sc > lsxC
OK! --> Start echo 0 | /home/binx/hbasfp0 > lbas
OK! --> Start echo 0 | mpirun -np 24 /home/binx/hvccfp0 > lvcc
OK! --> Start echo 1 | mpirun -np 24 /home/binx/hsfp0_sc > lsx
OK! --> Start echo 11 | mpirun -np 24 /home/binx/hx0fp0_sc > lx0
OK! --> Start echo 2 | mpirun -np 24 /home/binx/hsfp0_sc > lsc
OK! --> Start echo 0 | /home/binx/hqpe_sc > lqpe
OK! --> Start echo --- | mpirun -np 24 /home/binx/lmf-MPIK gaas > llmf_oneshot
... (this is the end of main stage) ...

== 0 iteration over ==
---- goto sc calculation for given sigma-vxc --- ix=,1
OK! --> Start echo --- | mpirun -np 24 /home/binx/lmf-MPIK gaas > llmf
OK! --> Start echo 0 | /home/binx/lmfgw gaas > llmfgw00

... (lines here omitted) ...
OK! --> Start echo 0 | /home/binx/hqpe_sc > lqpe
== 1 iteration over ==

... (lines here omitted). ..
== 2 iteration over ==

... (this repeat until ITER= 10(the first argument to gwsc)) ...

This shows that gwsc invoke lmf-MPIK,lmfgw,qg4gw,... successively. echo 3|hbasfp0
means running a fortran program hbasfp0 with the argument ’3’ from the standard input

32

(read(*,*) in fortran code). We can divide these successive calls to “preparation stage” and

“main stage”. Preparation stage is just to prepare eigenfunctions and so on which are required

for the “main stage” of GW calculation. At the end of “main stage”, we have the potential

file sigm.

As it shows, console output are going to l* files.

6.2 Preparation stage of gwsc

At the end of this stage, we get required eigenfunctions, BZmesh data, and so on, which are

required for the main stage. Note that echo 0 | lmfgw means supply an integer to the fortran

program lmfgw from standard input by read(*,*).

� lmf-MPIK (k-parallel version of lmf)

This is the one-body calculation for given sigm.gaas. At the beginning, we do not have

sigm.gaas. In this case lmf-MPIK just perform LDA/GGA calculation.

� echo 0 | lmfgw:

Get some small information files to start qg4gw. If you type just lmfgw, and observe

what occurs. It shows a menu and pauses (asking you to supply an integer); then we

supply 0 in this case. (If we do echo 0 | lmfgw, no pause occurs.)

� echo 1 |qg4gw : Get k points used in the GW calculations and the corresponding G

vectors. And what is the irreducible k point (See console output of qg4gw. gwsc keeps

it in lqg4gw).

Since we use the offset-Gamma method for BZ integration for G ×W , we need shifted

mesh points to calculate W at offset-Gamma points. The q vectors of offset-Gamma

method is in Q0P file. (If you have two points in Q0P, we see two shifted mesh points

in addition to regular mesh points.) Remember that cutoff of G is given by QpGcut psi

and QpGcut cou in GWinput. (Based on the experiences, we use smaller QpGcut cou to

reduce computational time. Explained in other section xxx).

� echo 1 | lmfgw-MPIK : Calculate the LDA eigenfunctions, eigenvalues, and 〈ψ|V LDA
xc |ψ〉

at the irreducible k points (shown at the bottom of output lqg4gw of qg4gw.)

� lmf2gw: store these data into DATA4GW V2 and CphiGeig, whose I/O is controlled by

a key subroutine gwinput v2.f.

6.3 Main stage of gwsc

We can start the main stage of GW calculation from these files;

GWinput DATA4GW_V2 CphiGeig QGpsi QGcou Q0P QIBZ SYMOPS BZDATA HAMindex CLASS;

these files contains eigenfunctions and so on in the manner of Eq.(17) of [2], eigenvalues and

other required information. This is the starting point of the GW calculation.

• GWinput : computational conditions.

• DATA4GW V2 : Crystal structures and so.

• CphiGeig : Eigenvalues and Eigenfunctions

• QGpsi : q and G vector for the eigenfunctions(q means k in the previous section),

• QGcou : q and G vector for the Coulomb matrix

• Q0P : q points near q=0 instead of q=0 (offset Gamma points)

• QIBZ : irreducible q points (This is also contained in BZDATA).

• SYMOPS : point group operation

• BZDATA : q points date (and tetrahedron weights if necessary) for BZ integrals.

• HAMindex : Hamiltonian index, all required complex index for Hamiltonian of PMT

method. (See the top of subroutine write hamindex in lm7K/subs/m hamindex.F. This is also in

fpgw/gwsrc/m hamindex.F. Identical files are in two different directory— it should be avoided

in future.)

33

• CLASS : class information or atomic sites (equivalent sites).

With these files, we do the main stage as

� rdata4gw V2: Read DATA4GW V2 and so on, and decompose it into files required in

the followings. And calculate PPOVL* files (overlap matrix of interstitial plane waves.

Because of technical reasons some different types of PPOVL* with q-point index).

� heftet : Get the Fermi energy EFERMI by tetrahedron method. It is used in hx0fp0.

� hchknw : stores the number of required ω points along real-axis into NW.

(NW is not essentially used, but is supposed to exist in the followings.)

� echo 3|hbasfp0: gives the product basis for Core exchange.

� echo 0|hvccfp0: gives the Coulomb matrix for the Core exchange.

� echo 3|hsfp0 sc : gives the Core exchange part of the self-energy. 12

� echo 0|hbasfp0: gives the product basis.

� echo 0|hvccfp0: gives the Coulomb matrix v.

� echo 1|hsfp0 sc : gives the exchange part of the self-energy.

� echo 11|hx0fp0 sc : gives the correlated part of the screened Coulomb interaction

W − v.

� echo 2|hsfp0 sc : gives the correlated part of the self-energy.

� echo 0|hqpe sc: gather data and write down final results into sigm, QPU, TOTE.UP

files.

6.4 Other functions (or scripts)

In addition to gw lmfh, there are some other additional scripts and functions.

� gw lmfh : The one-shot GW calculation. Lifetime(impact ionization rate) of QPs.

� gwsc : QSGW calculation explained here

� epsPP lmfh, eps lmfh : Dielectric function without or with local-field effects.

� run-mode 4 of hsfp0: to plot the spectrum function Σ(ω).(need to be fixed again prob-

ably).

� epsPP lmfh chipm : non-interacting spin susceptibility. One-degree of freedom like

Rigid moment approx. After it ends, you need to do calj_nlfc_metal and/or calj_summary_mat

to get the full spin susceptibility.

� genMLWF : Wannier funciton and its matrix elements of the Screened Coulomb inter-

action.

7 Usage problems, QandA error messages.

1.Bandplot for FSMOMMETHOD/=0

Even when you use FSMMOMMETHOD/=0 in GWinput for gwsc,

you need to set FSMOMMETHOD=0 (or comment it out) when you run job_band_nspin2.

12Correlation part due to cores is neglected. In future, we will switch to a version without PB for core part to
reduce computational time and for numerical accuracy.

34

[If you run job_band_nspin2 with FSMOMMETHOD/=0, it make a shift

(adding bias magnetic field).]

2.Note that ctrlgenM1.py automatically set this for --systype=molecule.

Then we have

TETRA=0

N=-1 #Negative is the Fermi distribution function W= gives temperature.

W=0.001 #W=0.001 corresponds to T=157K as shown in console

In addiiton, FSMOM (n_up-n_down) is needed (FSMOMMETHOD=1)if we

have magnetic moment.

3. core>evalence message.

Ecore is grater than Evalence.

For save, we do not allow this.

Complare ECORE file and valence levels, shown in log file or

console output.

4. If you see a error message from lmf (e.g., internally called in the gwsc script).;

Exit -1 rdsigm: Bloch sum deviates more than allowed tolerance (tol=5e-6)

You have to enlarge RSRNG so that lmf finsh normally.

5. Back ground charge and fractional Z.

You can use fractional numbers for ATOM_Z, and also can set

valence charge by BZ_ZBAK (I removed BZ_VAL).

You see console out put, e.g,

"Charges: valence 19.80000 cores 8.00000 nucleii -28.00000

hom background .20000 deviation from neutrality: 0.00000

. This is a case with BZ_ZBAK=.2.

NOTE: at the first iteration, Charges: shows such as

Charges: valence 8.00000 cores 20.00000 nucleii -28.00000

hom background 0.12300 deviation from neutrality: 0.12300

because of the initial condition by superposition of atoms. It show

deviation seems nonzero. But charge should be conserved from the

next iteration.

6. Not converged in metal. --->mixing may help

For example, if you try metal such as Bi2Sr2CuO6, it may fail at LDA/GGA level.

Then use ITER MIX=A2,b=.2. or something (.2 means it only mix 20% of output to give

new input for next iteration). Then I see convergence. (b is the

mixing parameter.

7. Use PZ or not.

If spillout of core is not so small (more then 0.05 or something.),

it is better to use PZ(lo). Treat the core as valecne.

Bi4d is such a case. Maybe use PZ=0,0,4.9

8. Core treatment

35

See 10.1103/PhysRevB.76.165106 (Eq.35 and after).

Now I usually not use CORE2 (CORE1 only).

9. ERROR EXIT! rgwina: 2nd wrong l valence

This may be because you use wrong GWinput.

Back it up. And run mkGWIN_lmf2 (any n1 n2 n3 is fine).

10. Known bug.

Error occurs when system is anisotroic such as CuAlTe2.

Temporary fix is "Add token NPWPAD=100 in HAM category".

(guess of used APW fails (more than expected)).

CuAlTe2,CuGaTe2 cases.

11. Known bug

a little unstable when metal GGA, especially when we have large empty regions.

8 Cautions for usage

1. == not meaningful total energy in QSGW===

Total energy shown in QSGW mode in current version is not meaningful. (just treat as

an indicator to convergence).

2. == Do we use VWN or GGA for QSGW? ===

In principle, QSGW results should not depends on VWN or GGA (XCFUN=1 or 103 in

ctrl). But there is minor dependence, because

1. frozen core density.

2. core eigenfunctions.

3. radial basis functions

4. Slight numerical reason

(This is probably because Sigma-interpolation procedure But not exactly figured out yet

→ affect about 0.02eV as for band gap for GaAs.). In anyway, use VWN (HAM XCFUN=1)

as standard. And such technical things affects, 0.05 eV level of error for band gap.

3. EH and EH2 : For si, if EH and EH2 are the same, the following error occurred.

fexit,fexit2,fexit3 error retval= -1

Exit -1 zhev_tk2: nev /=nevx something wrong.

The large EH, EH2 get to be meaningless. We usually use up to ∼ 2. (If you use very

large EH such as E∼ 10, I am not so sure weather it is)

4. The options about the product basis within MT. (SeungWoo’s memo)

<PRODUCT_BASIS>

tolerance to remove products due to poor linear-independency

0.100000D-02 ! =tolopt

When the product basis are made, we may have poorly linear independent basis. For

example, one in the set {f1, f2, ..., fn} would be almost give by a linear-combination of

others. We need to make the linear-independent set. Therefore, after calculating the

overlap matrix 〈fi|fj〉. We do diagonalization, then we remove eigenvectors correspond-

ing to small eigenvalues than tolopt. See the hbasfp0 command in gwsc

36

lcutmx(atom) = maximum l-cutoff for the product basis.

4 4 4 2 2 4 4

For φ1 × φ2 case, |l1 − l2| ≤ ltot ≤ |l1 + l2|. So ‘lcutmx’ changes the maximum cutoff for

the ltot. The order is the same as the order of atoms in the ctrl file.

atom l nnvv nnc !

1 0 3 3

1 1 3 2

1 2 2 1

‘atom’ means the atom number identified in the ctrl file.

‘l’ is the angular momentum quantum number.

‘nnvv’ is the number of radial functions (valence) on the augmentation-waves.

‘nnc’ is the number of radial functions for core.

The latter two ones, ‘nnvv’ and ‘nnc’, will be understood more clearly if you see the

following ones.

atom l n occ unocc ! Valence(1=yes,0=no)

1 0 1 1 1 ! 5S_p -----

1 0 2 0 0 ! 5S_d

1 0 3 1 1 ! 4S_l

1 1 1 1 1 ! 5p_p

1 1 2 0 0 ! 5p_d

1 1 3 1 1 ! 4p_l

Above options are about the product basis set within MT (Valence).

‘atom’ and ‘l’ are explained above. ‘nnvv’ for ‘atom = 1 and l = 0’ was ‘3’ so this case

we have 3 basis (‘n = 1, 2, 3’)

‘n’ is the degree of freedom of the radial function, φ. ‘n = 1’ means φ, ‘n = 2’ means φ̇,

and ‘n = 3’ means kind of φ̈, which the dot above the letter represents the differentiation

with respect to the energy. So ‘n = 1 and 2’ is related to the linearization of the radial

function and ‘n = 3’ is the local orbital which is restricted in MT. The local orbital can

be modified changing ‘PZ’ in the ctrl file. Finally, the number of the basis set which is

needed for expanding eigenfunctions is (l + 1)2 × n.

‘occ’ and ‘unocc‘ mean that we use only ones that checked as ‘1’, in other words we

neglects ‘0’ cases for making product basis. Be careful for confusion with name ‘occ’

and ‘unocc’. These don’t mean that occupied or unocc. When making product basis,

M = φ1 × φ2, ‘occ’ corresponds to φ1 and ‘unocc’ to φ2. For example,

atom l n occ unocc ! Valence(1=yes,0=no)

1 0 1 1 1 ! 5S_p -----

2 3 1 0 1 ! 4f_p

If the options are like the above, the product basis will be consists of (φ1 = φatom=1,l=0)×
(φ2 = φatom=1,l=0), (φatom=1,l=0 × φatom=2,l=3). As you can see, (φ1 = φatom=2,l=3) is

skipped.

In the ctrl file, ‘EH’ controls the l part. As for ‘EH’, (s, p, d, f) are used but GWinput

file uses (s, p, d, f, g). ‘EH’ : HEAD part. ‘GWinput’ : contains TAIL part... need more

explanation.

atom l n occ unocc ForX0 ForSxc ! Core (1=yes, 0=no)

37

1 0 1 0 0 0 0 ! 1S -----

1 0 2 0 0 0 0 ! 2S

1 0 3 0 0 0 0 ! 3S

Above options are about the product basis set within MT (Core).

‘nnc’ for ‘atom = 1 and l = 0’ was ‘3’ so this case we have 3 basis (‘n = 1, 2, 3’)

Finally, for the convergence check, we can modify the following three things, (i) tolerance,

(ii) lcutmx, and (iii) occ and unoccu.

== one show QSGW (not one-shot GW) ==

one-shot QSGW can be useful in cases.

As it contains off-diagonal part, we can resolve band tanglement

problem in Ge (no band gap).

== Restart calculation in lda ==

lmf(lmf-MPIK) read rst.* in defaluts.

rst contains electron density.

If rst is already converged, it stops after two iteration.

rst contains atomic positions.

So, in order to read atomic positions change in ctrl,

Use options shown in lmf --help.

== Restart calculation in qsgw ==

To remove mixsigm* (mixing for sigm), maybe required.

== iteration check ===

First, watch console output of gwsc (do redirect to output file)

Need to check OK! signs arrayed on 1st columns.

gwsc iteration is time cosuming,

So we need to check calculations are normally going on or not.

Memory inefficiency.

Set ’KeepEigen off’ an ’KeepPPOVL’ off.

In fact, out code is still inefficient for memory usage.

grep gap llmf ---> minimum gap at mesh point.

see save.* ,or grep ’[xc] ’ save.*

the end of iteration of lmf is shown as x or c.

(if failed, QPU file.

dqpu QPU.4run QPU.3run

As for usual semi-conductor, accuracy abou t0.1 eV is limit of current implementation.

Set vwn (xcfun=1) looks better (stable) for GW.

$grep rms lqpe*

shows

... rmsdel=2.44D-04

38

... rmsdel=4.91D-03

... rmsdel=2.44D-04

... rmsdel=3.37D-04

If rsmdel is getteing to be smaller, it is on convergence path.

(but in magnetic cases, it may give be too good even not yet going to

be converged..., beccause magnetic energy is so small)

grep diffe llmf ---> difference of energies of each iteration.

ehf (harris energy)

ehk (Hohenberg kohn energy)

== emax cutoff for APWs. ==

We can not use so many APWs in current version,

because of overcompleteness (this is because null vector within MTs),

In anyway, use pwemax=3 as standard (test it with 4 or 5).

To avoid failure of calculation, we may use smaller MT radius for

alkali, and alkali-earth elements.

In feature, I think we can introduce pseudopotentials for these atoms only.

== Check Used MTO

Near beginig of console output, what MTO you use is shown as: (GaAs case).

sugcut: make orbital-dependent reciprocal vector cutoffs for tol= 1.00E-06

spec l rsm eh gmax last term cutoff

Ga 0* 1.13 -1.00 6.579 1.19E-06 1459

Ga 1* 1.13 -1.00 7.028 1.26E-06 1807

Ga 2* 1.13 -1.00 7.475 1.09E-06 2109

Ga 3 1.13 -1.00 7.920 1.06E-06 2637

Ga 0* 1.13 -2.00 6.579 1.19E-06 1459

Ga 1* 1.13 -2.00 7.028 1.26E-06 1807

Ga 2 1.13 -2.00 7.475 1.09E-06 2109

As 0* 1.18 -1.00 6.300 2.13E-06 1243

As 1* 1.18 -1.00 6.720 1.26E-06 1471

As 2* 1.18 -1.00 7.140 1.37E-06 1837

As 3 1.18 -1.00 7.558 1.05E-06 2229

As 0* 1.18 -2.00 6.300 2.13E-06 1243

As 1* 1.18 -2.00 6.720 1.26E-06 1471

As 2 1.18 -2.00 7.140 1.37E-06 1837

== gwsc cause error stop.

Have you ever changed MTO setting? Consistent with GWinput?

== QSGW for Fe.

It is better to use 3p as core. Furthermore, 3d+4d as valence is better.

Thus we need to set PZ=0,3.9,4.5

I also got aware that emax_sigm should be large enough (4\sim5 Ry)

to have smooth band dispersion. n1n2n3 can be 10x10x10.

39

== RSRNGE: enlarge RSRNGE ===

Use RSRNGE=10 or so (in cases, RARNGE=20 or more is required),

for large number of k points. Try and enlarge it if it fails with a

message "Exit -1 rdsigm: Bloch sum deviates more than allowed tolerance (tol=5e-6)".

We will have to make it automatic in future.

Detailed memo (for deverlopers) is at the bottoem of ecalj/Document/BACKUP/MarksOriginalDoc/gw.html.

== Q0P check

In cases, it is better to use Q0Pchoice=2 instead of default Q0Pchoice=1.

(For slabs, Q0Pchoice=2 may be better; need check more. In anyway,

it is problematic to use unbalanced k points for anisotropic cell).

See Copmuter Physics Comm. 176(2007)1-13).

=== When calculation in LDA level fails ===

when calculation fails in LDA level.

(1) smaller MT

(2) fewer PW. smaller pwemax.

(3) core as semicore.

=== LDA+U ===

not yet written...

=== MAE by rotating crystal ===

(we have a sample at lm7K/TESTsmaples/MAEtest/, but only in GGA/LDA).

=== spin wave ===

J calculation.

====

If not stable convergence in gwsc, try to set

mixbeta 0.5

(and/or mixpriorit 3 or something)

at the begining of sigma.

=======

cleargw (directory):

This command clean up up intermediate files under (directory).

This recursively into deeper level. Be careful, or edit it.

I use it as ’>cleargw .’

Magnetic moment within MTs are shown as

40

charges: old new

smooth 17.240314 17.240740 ...

mmom 0.000024 -0.000010

site 1 6.207135 6.206590

mmom 1.062276 1.062991 <--- here

site 2 6.207115 6.206834

mmom -1.062323 -1.062958 <--- here

site 3 1.172718 1.172918

mmom 0.000011 -0.000011

site 4 1.172718 1.172918

mmom 0.000011 -0.000011

In this case, MTsite1 has 1.062991 and MTsite2 has -1.062958.

>grep ’lin mix’ -A30 llmf

can take out this message (if console output is in llmf).

ORBITAL MOMENT in pertubation:

Try

>lmf nio --rs=1,0 -vso=1 --quit=band >llmf

After converged, try

>grep IORBTM -A20 llmf

Then llmf shows shows orbital moment in first order perturbation.

(Here --rs=1,0 read rst.* file but not change it. See >lmf --help.

--quit=band means quit just after band calculation.)

== EPS mode,

Check Im part of chi0 is smoothly damping at high energy (typically

1Ry or larger enengy range). If there is some large Im part remains,

something strange (usually due to orthogonality problem of

eigenfunctions when you set low q).

Related source codes are in ecalj/lm7K/ .

A command ecalj/lm7K/ctrlgenM1.py can generate ’standard input file (ctrl file)’

just from a given crystal structure file called as ctrls file.

Binaries are lmf and lmf-MPIK (MPI k-parelell verion).

8.1 lmf –help

lmf –help show option of –rs=(five numbers); this let lmf know how to read atm.* file which

is the initial atom file by lmfa.

9 Wannier function

We can generate Wannier functions (maximally localized Wannier Functions or similar) by a

script genMLWF. It automatically perform cRPA calculation sucessively. (If it is not necessary,

insert ’exit’ in genMLWF, after it performs lmaxloc2).

41

Try to run examples in ecalj/MATERIALS/Sample_MLWF/. Read README in it. To run

the script genMLWF, we need to get GWinput by editing GWinput.tmp. (mkGWin_lmf2 contains

default Wannier section). In addition, we have some settings (energy windows and so on).

This is the example of the initial conditions for Cu case. 5 is the number of Wannier function.

The most left one means φ index and the right one of it is φ̇ index. They are written in the

@MNLA CPHI file.

Then we can run genMLWF. After it finished, we can analyze it results. (if you don’t need

Wannier funciton plot, You can skip a line of wanplot in genMLWF. Then we don’t need to

set vis_wan_* options.)

9.1 lwmatK1 and lwmatK2

If you input the following command

>grep Wan lwmatK*

You will get the following results. (This case : Cu cases)

lwmatK1: Wannier 1 1 24.644475 0.000000 eV

lwmatK1: Wannier 1 2 24.644576 0.000000 eV

lwmatK1: Wannier 1 3 25.471361 0.000000 eV

lwmatK1: Wannier 1 4 24.644575 0.000000 eV

lwmatK1: Wannier 1 5 25.470946 0.000000 eV

lwmatK2: Wannier 1 1 0.000000 eV -21.263759 -0.000000 eV

lwmatK2: Wannier 1 2 0.000000 eV -21.263839 0.000000 eV

lwmatK2: Wannier 1 3 0.000000 eV -21.931033 -0.000000 eV

lwmatK2: Wannier 1 4 0.000000 eV -21.263839 -0.000000 eV

lwmatK2: Wannier 1 5 0.000000 eV -21.930702 -0.000000 eV

Wanneir Branch now under developing (imported from T.Miyake’s Wannier and H.Kino’s).

A. make at ecalj/fpgw/Wannier/ directory, and do make, and make install.

(need to check Makefile first). You first have to install fpgw/exec/ in advance.

B. Samples are at these directories.

MATERIALS/CuMLWFs (small samples),

MATERIALS/CuMLWF/

MATERIALS/CuMLWFs/

MATERIALS/FeMLWF/

MATERIALS/NiOMLWF/

MATERIALS/SrVO3MLWF/

C. With GWinput and ctrl.*, run

>genMLWF

at these directories.

In GWinput, we supply settings to generate Wannier funcitons. (Sorry,not documentet yet..)

D. After genMLWF, do

>grep Wan lwmatK*

then compare these with Result.grepWanlwmatK

These are onsite effective interactions (diagonal part only shown).

*.xsf are for plotting the Maximally localized Wannier funcitons.

Anyway, documentaion on Wannier is on the way half.

Time consuming part (and also the advantage) is for effective interaction in RPA.

42

Look into the shell script genMLWF; you can skip last part if you don’t need the effective interaction.

10 ctrl file details

A ctrl file is usually generated from a ctrls file by the ctrlgenM1.py (a crystal structure file is

not “ctrl” but “ctrls”.). It contains self explanation. Here we give complementary explanations

to it. Let us Look into a ctrl file. This is a head part of ctrl.cu generated by ctrlgenM1.py:

This is generated by ctrlgenM1.py from ctrls

For tokens, See Document/Manual/CategoryAndToken.org.

Do lmf --input to see all effective category and token

It will be not so difficult to edit ctrlge.py for your purpose

VERS LM=7 FP=7 # version check. Fixed.

IO SHOW=T VERBOS=35 TIM=2,2

SHOW=T shows readin data (and default setting at the begining of

console output)

It is useful to check ctrl is read in correctly or not

(equivalent with --show option).

larger VERBOSE gives more detailed console output.

SYMGRP find # ’find’ evaluate space-group symmetry automatically.

Usually ’find is OK’, but lmf may use lower symmetry

...

Note that # means comment lines. We can also use lines starting from % const ... to define

variables and set constant.

We see “categories” such as VERS, IO, and so on. The beginning of categories are starting

from the first column. Under categories, we have ”tokens” such as VERBOSE. Thus we specify

full name of token VERBOSE under category IO as IO_VERBOSE.

� IO_TIM is for debugging. It shows which subroutines are called and so on. Bigger number

shows deeper subroutines.

� SYMGRP is a category without token under it; we set generators of space group (See expla-

nation in previous paragraph). When we set find, it automatically calculate symmetry

of crystal lattice. If we like to enforce symmetry, set some of generators which are shown

by lmchk.

� We see ctrls is embedded in the ctrl by ctrlgenM1.py.

... (skip) ...

% const da=0 alat=6.798

STRUC ALAT={alat} DALAT={da}

PLAT= 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0

NL=4 NBAS= 1 NSPEC=1

SITE ATOM=Cu POS=0 0 0

... (skip) ...

NL, NBAS(number of SITE) and NSPEC(number of SPEC) are automatically added by

ctrlgenM1.py. It is possible to deform unit cell by adding some optional tokens under

STRUC category. Search STRUC in an old document (which may be still effective)

BACKUP/MarksOriginalDoc/lmto.html. However, it is a little complicated. For new

calculations, it is better to find some examples first.

43

� SITE category: As for MT sites, we have two categories. (1)SPEC(species) and (2)SITE(specify

centers of atoms(species) in primitive cell). As for SPEC, we specify MTs(radius, Z,

MTOs on it) appeared in the cell. These are defined subtokens under SPEC ATOM=foobar

(we have multiple SPEC ATOM=foobar).

Then we place these MTs at SITE sections in the cell. At SITE, we specify atomic

sites (What SPEC ATOM is placed to positions by POS) in a primitive cell. We set

POS= by direct form (Cartesian) but with the unit of ALAT+DLAT. Total number of SITE

(number of tokens SITE ATOM) is the number of atoms in the primitive cell. Setting

POS= under SITE ATOM=foobar means that we place MT named as foobar defined in

SPEC ATOM=foobar. In addition, we can set SITE ATOM RELAX, if you like to find

relaxed structure (we simultaneously set DYN category) in LDA. As for relaxation, see

LaGaO_relax/ctrl.lagao example, and read DYN in Document/Manual/CategoryAndToken.org.

The SITE ATOM=foobar (with same foobar with different POS) are not necessarily

equivalent with respect to the space group operation of a system. Thus SITE_ATOM=foobar

are divided into “classes” which are connected by the operation. The lmf automatically

judge “classes” (see also info by lmchk). Thus not need to specify it, but it may be better

to check it. A sample is lmchk lagao at ~/ecalj/lm7K/TESTsamples/LaGaO_relax

� SPEC category: In ctrls, we have not yet specified contents of SPEC; we have just given

default symbols or only Z= when we use non-default names (shown by ctrlgenM1.py –

showatomlist). The command ctrlgenM1.py adds default SPEC sections.

We have some SPEC_ATOM, under which we give subtokens such as SPEC_ATOM_R(MT

radius), SPEC_ATOM_Z(nucleus charge), cutoff parameters of angular momentum, and so

on. These SPEC_ATOM is refereed to in SITE.

An example of SPEC category is

SPEC

ATOM=Fe Z=26 R=1.70

KMXA={kmxa} LMX=3 LMXA=4 NMCORE=1

PZ=0,3.9,4.5

EH=-1 -1 -1 -1 RSMH=0.85 0.85 0.85 0.85

EH2=-2 -2 -2 RSMH2=0.85 0.85 0.85

MMOM=0 0 2 0

ATOM=... (then the similar block of ATOM= are repeated.)

...

Under the token ATOM=Fe, we have subtokens SPEC_ATOM_Z,SPEC_ATOM_R, and so on.

Subtokens Z= is the nucleus charge and R= MT radius. Note that Fe is just a name to

distinguish MT sphere in the cell. If you set SPEC ATOM Z=27, it is recognized as Co

(since Z=27). LMX=3 is the maximum l of MTOs. Thus maximum l of MTO is l=3. The

maximum of l to expand electron density and potential within MT is LMXA (in con-

trast to usual LAPW), we can use quite small LMXA such as LMXA=4. NMCORE=1

means we calculate core density without non magnetically-polarization. This can reduce

computational confusion.

PZ is to set local orbital (if not, no local orbitals). EH and RSMH are to specify first set

of MTOs.(We can check how local orbitals are set by lmfa explained in the next section).

EH2 and RSMH2 are to specify second set of MTOs.

44

After PZ=, we have three numbers. These are numbers for s,p,d,f,g,... channels. Zero

means not exist. You can use space or comma(,) as delimiter. Here not only the in-

teger part of principle quantum number, but also the fractional part should be sup-

plied (If PZ=0,3,4, it does not work.) Now PZ=3.9 for p and PZ=4.5 for d. This

means we use local orbital for 3p, and local orbital for 4d (fractional parts (continu-

ous principle quantum number) are large ∼ 0.9 for core like orbital, and smaller for

extended orbital ∼ 0.3 or something. See Logarithmic Derivative Parameters in Doc-

ument/BACKUP/MarksOriginalDoc/lmto.html. This is a little confusing, thus we will

explain this in appendix. See Sec.10.1.

EH(damping factor), and RSMH (where the smooth Hankel function bent) determines

MTOs (or its envelope function as a smooth Hankel function). We now set four num-

bers for them. Thus we set MTOs s,p,d,f with EH=-1 and RSMH=0.85. Our current

test shows that RSMH is one half of R (that is, 0.85=1.70/2, but minimum RSMH is

0.5) and not need to be dependent on s,p,d,f. (If LMX=2, s,p,d are allowed and no f

MTOs.) EH is -1; not need to change except test purpose. In a similar manner, EH2

and RSMH2 for second set of MTOs are given. Just three numbers means these for s,p,d.

MMOM=s,p,d,f... gives initial condition of magnetic moment in µB (number of up-down

electron).

In cases such as As, the local orbital given by default ctrl is responsible of rather deep

core, and it is not need to be treated as valence electrons. In such a case, we don’t need

local orbital.

In the case of AntiFerro-II NiO, it contains two NiO in a primitive cell. Thus it is reason-

able to have two SPEC ATOM as Ni1 and Ni2, although subtokens under ATOM=Ni1

and ATOM=Ni2 (e.g. SPEC_ATOM_EH for them) are the same except initial condition of

magnetic moment of MMOM=s,p,d,f... See example of NiO.

The minimum help of call Category token subtoken are listed with minimum explanation

with

$ lmf --input

It gives a long output. But many of them are experimental and not need to manage them. A

part of it is

Token Input cast (size,min)

--

... ...

STRUC_ALAT reqd r8 1, 1

Scaling of lattice vectors, in a.u.

... ..

This is an minimum explanation of it. ”reqd” means ”required” (no default). r8 means it read

with real number, 1,1 means that ALAT=xxx should contain one number minimum (max is

also one) (See also STRUC PLAT, and so on).

There are kinds of examples in ecalj packages. Please look into their ctrls.* and ctrl.*

These are in lm7K/TESTsample/* and ecalj/CMDsampls. In addition, ecalj/MATERIALS

contain many samples (need a command); see a later subsection.

45

As for what is shown in $ lmf --input, most of important tokens are already described

in the ctrl file generated by ctrlgenM1.py. So, we don’t need to care many options shown by it.

For QSGW calculation:

We need a setting in ctrl file to read sigm file (HAM SIGP). It is simplified now,

and not need to care it so much. As we set RDSIG=12 in defaults, lmf read sigm

file and add it to one-body potential as long as sigm.* exist.

NOTE for old users: We now set SIGP[MODE=3 EMAX=9999.] in ctrl file to read

self-energy in lmf (or lmf-MPIK). This is because we use very localized MTOs (sim-

ilar with the Maxloc Wannier). Our test shows reasonable results and this simplify

algorithms. In my previous version, we asked you to use SIGP[MODE=3 EMAX=2.0]

where EMAX is a little (0.5Ry) less than emax_sigm. If something strange occurs,

try this setting).

• In principle, QSGW result should not depended on the choice of XCFUN. How-

ever, it can affect slightly. In our tests, it seems slightly better to use VWN (XC-

FUN=1) for QSGW calculations. (BUT need to check more...)

10.1 How to set local orbitals

As we stated, do "lmfa |grep conf" to check used MTO basis.

We have to set SPEC_ATOM_PZ=?,?,?

(they ordered as PZ=s,p,d,f,...) to set local orbitals.

lmv7 (originally due to ASA in Stuttgart) uses a special terminology

"continious principle quantum number for each l", which is just

relatated to the logalismic derivative of radial funcitons at MT

boundary. It is defined as

P= principleQuantumNumber + 0.5-1/pi*atan(r* 1/phi dphi/dr),

where phi is the radial function for each l. For example,

P= n.5 for l=0 of free electron (flat potential) because phi=r^0,

P= n.25 for l=1 because phi=r^1;

P= n.147584 for l=2 because phi=r^2; P=, n.102416 n.077979 for l=3,4.

(Integer part can be changed). See Logarithmic Derivative Parameters in

http://titus.phy.qub.ac.uk/packages/LMTO/lmto.html#section2

Its fractioanl part 0.5-atan(1/phi dphi/dr) is closer to unity for

core like orbital, but closer to zero for extended orbitals.

Examples of choice:

Ga p: in this case, choice 0 or choice 2 is recommended.

We usually use lo for semi-core, or virtually unoccupied level.

(0)no lo (4p as valence is default treatment without lo.)

3p core, 4p valence, no lo: default.

Then we have choice that lo is set to be for 3p,4p,5p.

(1)3p lo ---> 4p val (when 3p is treated as valence)

46

3d semi core, 4d valence

Set PZ=0,3.9

(P is not requied to set. *.9 for core like state. It is just an initial condition.)

(2)5p lo ---> 4p val (PZ>P)

Set PZ=0,5.5

5.5 is just simply given by a guess (no method have yet

implemented for

If 5.2 or something, it may fails

because of poorness in linear-dependency. We may need to observe

results should not change so much on the value of PZ.

(3xxx)4p lo ---> 5p val (we don’t use this usually. this is for test purpose)

4p lo, 5p valence

Set PZ=0,4.5 P=0,5.5 (In this case, set P= simultaneously).

(NOTE: zero for s channel is to use defalut numbers for s)

Ga d: (in this case, choice 0 or choice 1 is recommended).

(0)no lo (3d core, 4d valecne, no lo: default.)

Then we have choice that lo is set to be for 3d,4d,5d.

(1) 3d lo ---> 4d val (when 3d is treated as valence)

Set PZ=0,0,3.9 (P is not required to set)

(2) 5d lo ---> 4d val (PZ>P)

Set PZ=0,0,5.5

(3xxx) 4d lo ---> 5d val (this is for test purpose)

Set PZ=0,0,5.5 P=0,0,4.5

(NOTE: zero for s,p are to use defalut numbers)

If you like to read from atm.ga file instead of rst file(if exist).

You have to do lmf --rs=1,1,0,0,1, for example. See lmf --help

Becase rst file keeps the setting of MTO, thus change in ctrl is not

reflected without the above option to lmf.

===

47

11 GWinput details

11.1 generate a template of GWinput

As in the previous section, we need two input files ctrl.si and GWinput. In principle, these

two determines final results uniquely. A template GWinput.tmp is generated by mkGWIN lmf2.

Required files are

Input files

• ctrl.si : The control file for PMT method.

(Recently modified mkGWIN lmf2 runs lmfa internally. If you use older version, do lmfa in

advance).

Output files

• GWinput.tmp : A file including computational conditions for the GW calculation. In addi-

tion, it specifies the k points for which you calculate the QP energy.

When you run mkGWIN lmf, it asks you to supply three numbers for BZ integration as

== Type three integers n1 n2 n3 for Brillouin Zone meshing for GW! ==
n1=

Then you need to type a number e.g. as ”2 Return ” for n1. Then you need to repeat it

for n2 and n3 as

n1= 2 Return

n2= 2 Return

n3= 2 Return

. These numbers specifies what k points in BZ is used for BZ integration (In this case,

2× 2× 2 = 8 k point in the 1st BZ is used. Roughly speaking, we need 4× 4× 4 (or 6× 6× 6)

to get band gap for Si and so on, with ≈ 0.1 eV accuracy.)

Then you have to edit GWinput.tmp and copy it to GWinput. We details the GWinput in

later chapter.

We need to repeat mkGWIN lmf2 when you change MTO sections in ctrl file (adding PZ

case, and so on).

11.2 overview of GWinput

(Because of historical reason, input file is different from ctrl.*).

The main input files is GWinput. This controls the setting of GW calculation. The file

GWinput consists of structures as

keyword1 data1

keyword2 data2

...

In each lines, it consists of keyword and data. Data can be single or plural. As for keywords,

upper case or Lowercase is not distinguished. All keywords should start from 1st column (no

space at head). Order of lines are irrelevant. As for logical variable, you can use anything

“true, yes, on, 1, T” for .true., and anything “false, no, off, 0, F” for .false.

Or we have “tag sections” in GWinput specified by <PRODUCT_BASIS>, <QPNT>, <PBASMAX>,

<QforEPS>, and <QforEPSL>. (<PRODUCT_BASIS> is requires for all kinds of calculations.

<PBASMAX> is optional. <QforEPS> and/or <QforEPSL> are required for epsilon mode). It

is like

<PRODUCT_BASIS>

tolerance to remove products

48

0.100000D-02 ! =tolopt

lcutmx(atom)

3 3

atom l

...

</PRODUCT_BASIS>

. In these tag sections, you have to keep format for its own (usually numbers are read by free

format read(*,*)).

The fundamental readin routine for GWinput is a subroutine getkeyvalue defined in

gwsrc/keyvalue.F. getkeyvalue is a general and convenient readin routine in full use of

the f90 features. Read a head part of the file and try to do ”grep getkeyvalue *.F” in gwsrc/

or main/ so as to see how to use it (test routine is main/kino_input_test.F.)

Soche the GWinput consists of three sections

1. General section

2. <PRODUCT_BASIS> section

3. <QforEPS>,<QforEPSL> section (only effective for dielectric function mode)

4. <QPNT> section (only effective for one-shot mode)

5. <PBASMAX> section (optional)

We will explain each by each in the followings.

49

11.3 General section

In general section, it looks like

! ##### From GWIN0 ################

n1n2n3 1 1 1 ! for BZ meshing in GW

QpGcut_psi 4.000 !(See unit_2pioa for unit) |q+G| cutoff for eigenfunction.

QpGcut_cou 3.000 !(See unit_2pioa for unit) |q+G| cutoff for Coulomb and W.

unit_2pioa off ! off --> a.u.; on--> unit of QpGcut_* are in 2*pi/alat

alpha_OffG 1.000 !(a.u.) Used in auxially function in the offset-Gamma method.

!emax_chi0 99999.000 !(Ry) emax cutoff for chi0 (Optional)

emax_sigm 3.000 !(Ry) emax cutoff for Sigma

! ##### FREQUENCIES from GWIN_V2 ################

dw 0.005000 !(a.u.) energy-mesh (bin width size) along real axis.

omg_c 0.040 !(a.u.) energy-mesh is twiced at omg_c

! coaser mesh for higher energy. Width get to be doubled at omg_c.

iSigMode 3 ! QSGW mode switch for gwsc. use =3.

niw 10 ! Number of frequencies along Im axis. Used for integration to get Sigma_c

! E.g. try niw=6 and niw=12

delta -0.10D-05 !(a.u.) Broadening of x0. negative means tetrahedron method.

! used by hx0fp0. You get smeard x0 witth abs(delta).

deltaw 0.020000 !(a.u.) Mesh for numerical derivative to get the Z factor

esmr 0.003000 !(Ry) used by hsfp0. Keep esmr smaller than band gap for insulators

! Poles of G^LDA are treated as if they have width esmr in hsfp0.

! Change esmr for metals. See DOSACC*---especailly around Ef.

GaussSmear on ! Gaussian or Rectangular smearing for Pole of G^LDA with esmr for hsfp0.

—————————————————

1. BZ integration.

n1n2n3 3 integers as N1, N2, N3 (no default); They are ≥ 0.

Brillouin Zone mesh for integration is determined by keywordsBZmesh and n1n2n3. Cur-

rent version only allow regular mesh point including Gamma point for G × W . But

not that Chi RegQbz below allow you to use off-Gamma mesh for W (ω) (and dielectric

function mode).

We usually take ’4 4 4’, ’6 6 6’ or ’8 8 8’ for GaAs. For metal such as Fe, ’10 10 10’ or

more is better.

Chi RegQbz (on or off)

Chi RegQbz = on (default): Use regular mesh (including gamma) for eps calculation.

Chi RegQbz = off : Use off-Gamma mesh (Not including gamma) for eps calculation.

(In cases, Chi RegQbz off gives faster convergence as for n1n2n3; not only for GW, but

also for dielectric functions eps lmfh.)

2. Plane wave (q + G) cutoff

QpGcut psi 1 real (no default)

QpGcut Cou 1 real (no default)

unit 2pioa 1 logical (no defalt)

We have two cutoff for q + G. QpGcut psi is the cutoff of |q + G| for the IPW in the

expansion of the eigenfunctions. QpGcut Cou is for the IPW of the interactions v,D,W .

50

Its unit is specified by unit 2pioa ; ”off” means unit in a.u. and ”on” means in unit of
2π

alat
. (alat is length scale unit in ctrl.*).

Rule of thumb: QGcut_psi is a little (usually 0.5 or so) larger than QpGcut_cou. It be-

comes accurate if we use large QpGcut_cou. But it enlarge size of IPW(interstitial plane

wave) part of Mixed product basis. For test, try 2.7, 3.2, 3.7 for QGcut_cou (and add 0.5

or 1 for QGcut_psi). Larger one is expensive.

We expand eigenfunctions in the Muffin-tin division of the space. See Eq.[?] in Ref.[?];

in the current GW implementation, we use very simple form of eigenfuncitons (not by

the 3-component formalism in the [?]).

Thus the form of expansion is just related to the division of space; not directly related

to the difference among LAPW, LMTO, and PMT.

3. Eigenfunctions within MTs (no parameters setting for them).

The radial functions (phi and phidot for each l), corresponding to the true parts, (= 2nd

component in the 3-component formalism [?]), are automatically determined already in

the one-body part of program lmf-MPIK.

4. Cutoff for used bands.

emax chi0 : 1 real (optional,default=∞), in Ry

emax sigm : 1 real (optional,default=∞; We usually use 3 Ry).

emax_sigm is the maximum limit of the self-energy (measured from the Fermi energy).

See the paper [?] which shows how the results are affected by emax sigm. But in cases,

small emax_sigm can give poor dispersion curve (slightly unnatural behavior) because of

sudden cutoff by emax sigm. However, we like to use smaller value to reduce computa-

tional time.

That is, larger is better, but expensive (And note that we simultaneously need to use

empty spheres when we use large emax sigm, as shown in [?],).

Generally speaking, accuracy less than ∼0.1eV (for bandgap) is allowance of current

technique. Probably, it may be possible to have better accuracy, but it may ask us to

repeat many calculations with changing conditions to confirm stability.

nband chi0 : 1 integer (optional,default=∞)

nband sigm : 1 integer (optional,default=∞)

These specify how many bands you use in hx0fp0 (for chi0) and in hsfp0 (for sigma).

Higher bands above them are neglected.

5. Energy mesh related parameters.

— new after march2016 —

HistBin dw : 1 real (a.u.). Mesh width along real axis for W (ω).

HistBin ratio : 1 real (a.u.).

HistBin_dw and HistBin_ratio specify real space bins which we accumulate imaginary

part weight of polarization functions. The bins are (see frhis in ecalj/fpgw/gwsc/m_freq.F)

ωi = b ∗ (exp(a ∗ (i− 1))− 1), (4)

where [ωi, ω(i+1)] (i = 1, 2, ...,nwhis+1) is the i-th bin. HistBin_dw is bin width at ω = 0.

The ratio ω(i + 1)/ω(i) for large ω is exp(a)=HistBin_ratio. This choice of getting

coarser at high energy is because we think W (ω) around ω ∼ 0 gives most important

51

contribution to the GW approximation. If histogram bins are too wide, dielectric function

can be less accurate, but results may be not so much affected.

In GW calculation, the Plasmon pole is important. It is determined not by the Drude

weight; it usually gives small contribution to the Plasmon pole (for example, Si is de-

scribed well by a Plasmon pole model, but Si has no Fermi surface). We expect that the

GW results are not so sensitive to the choice of HistBin_dw, HistBin_ratio usually.

We may use fine mesh when we plot quantities such as W (ω) near ω = 0.

The ecalj gives W̄ (ω = 0) ∼ 0 for metal; where W̄ (ω) is the effective interaction averaged

in the Γ-cell [10]. And ¯W (ω get closer to v for larger ω.

Default value of them are given in fpgw/gwsrc/m_freq.F. They are

call getkeyvalue("GWinput","HistBin_ratio",oratio, default=1.03d0)

call getkeyvalue("GWinput","HistBin_dw",dw, default=1d-5) !a.u.

These are safer settings. Thus new mkGWIN_lmf2 (GWinput.tmp generator) gives default

lines in GWinput as

HistBin_dw 2d-3 ! 1d-5 for metal !(a.u.) bin width along real axis at omega=0.

HistBin_ratio 1.08 ! 1.03 for check. frhis(iw)= b*(exp(a*(iw-1))-1),

where a=ratio-1.0 and dw=b*a

. This is given in the conv2gwinput.F.

— old version. before 14march2016 –

dw : 1 real (a.u.). Mesh width along real axis for W (ω).

omg c : 1 real (a.u.).

dw and omg c determines ω mesh along real axis to calculate W (ω)...

————————-

(WARNING! Some of my examples may show as if they are in ”(Ry)”. But they are Wrong!)

delta : 1 real (a.u.). We usually use very small number as -1d-8 for gw lmfh, eps mode

and so.

xxx does this really make the stabilization? xxx This is the size of δ in denominator

of Π (EQ.xxx). But (I think) we can (or can not) use it so as to make broadening for

theoretical test (maybe not exactly corresponding to δ). or when you make calculation

stabilized (Takao need to check this point again xxx!)

[Old note. Need check xxx: In gw lmf, it is used for broadening of x0 when it call

hx0fp0. Then delta is δ is EQ.32. The sign of delta is just used as a flag whether you

use the tetrahedron method of dielectric constant [11] or not; minus sign means ”Use the

tetrahedron method for D”; plus sign means you do it by simple sum. You can usually

use this default setting. But it might be possible to use a larger value to smear the

fine structures on the energy-dependence of W in cases. This might be necessary if W

is so energy-dependent and dw is not so small to resolve the structure —but I don’t know.]

niw : 1 integer.

Number of integration points along the imaginary axis(FIG.1) to get Σc. See rou-

tines wint* called from sxcf*.F, which is called from the main routine hsfp0.m.F (or

hsfp0.sc.m.F in the QSGW case). The integration points are iω′(n) = i(1/x(n) − 1),

where x(n) is the usual Gaussian-integration points for the interval [0,1]. In addition,

52

we give the special analytical treatment for the peaky part at ω′ = 0. Out tests shows

niw=6 for Si is good enough for 0.01 eV accuracy. The convergence as for niw is quite

good. This integration scheme has been developed by Ferdi Aryasetiawan. The num-

ber of points should be the one of 6,10,12,16,20,24,32,40,or 48. It is because we use a

subroutine gauss in /gwsrc/mate.F prepared by Ferdi. We will replace better one in

future. See II-F in Ref.I.

GaussSmear : 1 logical

esmr : 1 real (Ry). Used by hsfp0 (and hsfp0.sc for QSGW).

Poles of the Green function GLDA are treated as if they have width esmr in hsfp0. If

GaussSmear is on, each pole of GLDA is smeared by a Gaussian function with σ =esmr

in the calculation of hsfp0. If GaussSmear is off, we assume rectangular smearing for the

poles. Usually it is necessary to take rather smaller value than band gap for insulators.

Try to use 0.003 or so in the case of Si and GaussSmear=on.

For metal, this esmr is somehow related to how we capture the Fermi surface; In principle,

we have to take the limit n1n2n3 →∞ and esmr → 0). However, we may inevitably use

some finite esmr to make calculations converged.)

deltaw : 1 real (a.u.) only for one-shot case.

deltaw is the interval for the numerical derivative ∂Σ(ω)
∂ω

in EQ.8. We calculate 〈ψkn|Σ(εkn+

deltaw)|ψkn〉 and 〈ψkn|Σ(ψkn−deltaw)|ψkn〉 in addition to 〈ψkn|Σ(εkn)|ψkn〉. From

these values, we can calculate two Z (or second-derivative of Σ(ω)), as shown in SECU.

It will help to see whether the used deltaw is O.K. or not.

6. Offset-gamma point.

Q0PChoice 0 :1 integer

Q0P Choice gives how to determine the offset gamma points. Initially we take them as

1: —q— is ten times smaller than regular mesh.(default)

2: —q— is average in the Gamma cell (cell of BZ including Gamma point).

Then we choose only inequivalent q points based on the point group symmetry. Obtained

offset gamma points is given in Q0P file.

alpha offG : 1 real (a.u.)

alpha offG corresponds to α in EQ.48. alpha offG=1d0 is usually good in the sense

that it seems to be almost a limit at α→ 0. So you can usually fix it as alpha offG=1d0,

and check the convergence as for n1n2n3.

7. core orthogonalization (default=off)

CoreOrth 1 logical — recently, this option is not maintained — Better to use local

orbital instead, so that core charge do not spill out.

If this is on, we enforce cores orthogonalized to valence φ and φ̇ (these appear in II-C

in Ref.I). This procedure enforce the correct orthogonal condition, thus we have correct

behavior for the dielectric function at q → 0. However, it may deform core functions

too much, especially in the case of shallow 3d (or maybe 4d) cores. So we don’t recom-

mend use this option, even though then the orthogonality condition is somehow broken.

Anyway you can check weather it affects to results or not by this switch.

8. QP self-consistent GW.

iSigMode 1 integer (no default).

This is required for QSGW calculation by the script gwsc. We have some possible ways to

make GW self-consistent (how we determine Vxc from calculated Σ(ω)). We now mostly

use iSigMode=3.

53

3: Use Re
Σnn′(εn) + Σnn′(εn′)

2
(mode-A in [?]).

1: Use Σnn′(EF) + δnn′(Σnn′(εn)− Σnn′(EF)) (mode-B in [?]).

5: Use δnn′Σnn(εn) (Eigenvalue-only self-consistency, keeping the eigenfuncions as given)).

See /gwsrc/sxcf_fal2.sc.F, which is called from the main routine hsfp0 sc (this is the

routine to calculate self-energy)).

9. Others

KeepEigen 1 logical (default=on)

These are for memory usage. When KeepEigen is on, eigenfunctions (Eigen) are kept in

memory during calculation. If you have not enough memory in your machine, use them

off. Then you can save memory usage. However, then we may have too frequent access

to files. So %CPU might get lower. Be careful to use these options.

Verbose 1 integer (default=0) If 0, it gives minimum standard output. If 40 or higher,

it shows too much output. (these verbosity control is not well-organized yet).

10. LFC@Gamma , EIBZmode , multitet are for test purpose.xxx

11.4 <QPNT> section
(only for one-shot GW. Not suitable to make band plot in BZ.) This section is to specify the
q points and bands index for which you calculate the QP energies (QPE). An example is

<QPNT>
--- Specify the q and band indeces, for which we evaluate the self-energy ---

*** all q -->1, otherwise 0; up only -->1, otherwise 0
0 0

*** no. states and band index for calculation.
3

15 16 17
*** q-points, which shoud be in qbz. See KPNTin1BZ.

2
1 0.0000000000000000 0.0000000000000000 0.0000000000000000
2 0.2886751358562925 -0.5000000000000000 0.0000000000000000
3 0.0000000000000000 0.0000000000000000 0.3073140749846343

</QPNT>

Numbers are read by free format read(5,*), thus the numbers should be separated by space.

At the next line to the first ***, you have to give two numbers used as flags. Both of them

takes 0 or 1. 1st one is whether you calculate QPE for all q points (in IBZ) or not. If it is 1,

you calculate QPE for all q. If it is 0, you calculate them only for q points specified within

this file. In the case of metal where you want to calculate the Fermi energy for QPE, you need

to calculate all the eigenvalues somehow above the Fermi energy (If you put 1, it is safer but

too time-consuming). The second number is whether you calculate QPE for both spins or not.

It is usually 0. In the case of antiferro material, it should be 1.

From the next line to the second ***, you have to specify the states for which you calcu-

late the QPE. In this example, you calculate the 3 bands of QPE for 15th, 16th, and 17th

eigenfunctions (they are ordered from the bottom).

From the next line to the third ***, you have to specify the q points. The first numbers

of each line are dummy. In this case, you calculate QPE for two q points. The third q point

is neglected because 2 is given at first.

When you generate GWinput.tmp, you see all the possible q points are listed (these q

points should be a part of the regular mesh points).

In the QSGWmode (gwsc), this section is neglected (then we calculate all QPE on regular

mesh points); so its hsfp0 sc part is quite expensive (usually it takes time more than hx0fp0).

Additional Note ————–

54

QPNT nbandrange num1 num2 (two integers).

This override setting in <QPNT>. (I think this switch may still work, but not checked recently).

AnyQ on (default is off)

If this is on, you can specify any Q point which is not on the mesh point. For the purpose, we

need to prepare eigenfunctions at extra k points. But it is automatic. In order to make the

computation efficient. Even in this case, from the computational view, it is better to choose

q on the two times finer divided mesh (or three times finer divided k mesh). This is used for

Fig.6 in Phys. Rev. B 74, 245125 (2006).

55

11.5 set QPNT for eps mode (QforEPS section)

For eps modes (scripts eps_*, which are for linear responses. See Sec.16), you have to specify

q point in the following ways.

1. QforEPSIBZ on

Then all Q point in IBZ are used.

2. Use section as

<QforEPS>

0d0 0d0 0.01d0

0d0 0d0 0.02d0

0d0 0d0 0.04d0

0d0 0d0 0.08d0

</QforEPS>

In addition, you can specify Q points as

<QforEPSL>

0d0 0d0 0d0 1d0 0d0 0d0 8

0d0 0d0 0d0 .5d0 .5d0 0d0 8

</QforEPSL>

This is along the line— 8 point along the line (not left-end q; so omitting 0 0 0). The first

line means line (0d0 0d0 0d0)—(1d0 0d0 0d0) is divided to 8. So we have 7 points, (0.125 0

0), (0.25 0 0),... (1 0 0).

56

11.6 <PRODUCT BASIS> section

This section is to define product basis to expand W and so. Numbers are read by free format

read(5,*),thus the numbers should be separated by space. The line number in this section is

meaningful (you can not add comment lines).

<PRODUCT_BASIS>
tolerance to remove products due to poor linear-independency
0.100000D-04 ! =tolopt; larger gives smaller num. of product basis. See lbas and lbasC, which are output of hbasfp0.

lcutmx(atom) = maximum l-cutoff for the product basis. =4 is required for atoms with valence d, like Ni Ga
4 3
atom l nnvv nnc ! nnvv: num. of radial functions (valence) on the augmentation-waves, nnc: num. for core.
1 0 2 3
1 1 2 2
1 2 3 0
1 3 2 0
1 4 2 0
2 0 2 1
2 1 2 0
2 2 2 0
2 3 2 0
2 4 2 0

atom l n occ unocc ! Valence(1=yes,0=no)
1 0 1 1 1 ! 4S_p -----
1 0 2 1 0 ! 4S_d
1 1 1 1 1 ! 4P_p
1 1 2 0 0 ! 4P_d
1 2 1 1 1 ! 4D_p
1 2 2 0 0 ! 4D_d
1 2 3 1 1 ! 3D_l
1 3 1 0 1 ! 4f_p
1 3 2 0 0 ! 4f_d
1 4 1 0 0 ! 5g_p
1 4 2 0 0 ! 5g_d
2 0 1 1 1 ! 2S_p -----
2 0 2 0 0 ! 2S_d
2 1 1 1 1 ! 2P_p
2 1 2 0 0 ! 2P_d
2 2 1 1 1 ! 3d_p
2 2 2 0 0 ! 3d_d
2 3 1 0 1 ! 4f_p
2 3 2 0 0 ! 4f_d
2 4 1 0 0 ! 5g_p
2 4 2 0 0 ! 5g_d

atom l n occ unocc ForX0 ForSxc ! Core (1=yes, 0=no)
1 0 1 0 0 0 0 ! 1S -----
1 0 2 0 0 0 0 ! 2S
1 0 3 0 0 0 0 ! 3S
1 1 1 0 0 0 0 ! 2P
1 1 2 0 0 0 0 ! 3P
2 0 1 0 0 0 0 ! 1S -----

</PRODUCT_BASIS>

This section is read in the free format in fortran. So, e.g., 0.01 works as same as 0.10000D-01.

The line order is important (you have to keep the order given by GWinput.tmp). Be careful

atom atom id—lmf may re-order it and pass it to gw code. Look into LMTO file (generated

by mkGWIN lmf2); which contains crystal structure information after such re-ordering by

lmf. I used ! to make clear that things after ! are comments. But ! is not meaningful – just

the expected numbers of data separated by blank(s) are read for each line from the beginning

of lines.

� 0.100000D-02 ! =tolopt controls a number of Product basis to expand the Coulomb

interaction within MTs. tolopt is a criterion to remove the poorly linear-independent

product basis. Note that the product basis, which is to expand the Coulomb interaction,

is different from the basis to expand eigenfunctions. In our experience, 0.100000D-02

(=0.001) is not so bad. If you like to reduce computational time use 0.01 or so, but a

little dangerous in cases. With 0.0001, we can check stability on it.

(note: By supplying multiple numbers, we can specify tolopt atom by atom. Remember

lmchk gives atom ID.)

57

� lcutmx(atom) is the l cutoff of product basis for atoms in the primitive cell (do lmchk

for atom id). In the case of Oxygen, we can usually use lcutmx=2 (need check by

the difference when you use lcutmx=2 or lcutmx=4). Then the computational time is

reduced well.

� (dec2014:<PBASMAX> is not checked recently; see fpgw/main/hbasfp0.m.F and fpgw/gwsrc/basnfp.F).)

You can use <PBASMAX> section to override this setting. It is given as

<PBASMAX>

1 5 5 5 3 3

2 5 5 3 2 3

3 3 3 2 2 2

</PBASMAX>

The first number is for atom index (fixed), and other are product basis for each l channel.

� The integer numbers in 4th line lcutmx gives the maximum angular momentum l for the

product basis for each atomic site. In our experience, lcutmx=4 is required when the

semi-core (or valence) 3d electrons exist and we want to calculate the QP energies of

them.

� Keep a block starting from ” atom l nnvv nnc ...” as it originally generated in GWin-

put.tmp. It just shows that how many kinds of radial functions for cores and valence

electrons for each atom and l. nnvv=2 in the case of φ and φ̇; nnvv=3 in the case to add

the local orbital in addition.

� There are two blocks after the line ”atom l n occ unocc :Valence(1=yes, 0=no)’ and

after ”atom l n occ unocc ForX0 ForSxc ! Core (1=yes, 0=no)’. These are used to

choose atomic basis to construct the product basis. The product basis are generated from

the products of two atomic basis.

GWinput.tmp generated by mkGWIN lmf2 contains labels on each orbitals as 4S_p,

4S_d, 4P_p... Here 4S_p is for φ4s; 4S_d for φ̇4s; 3D_l for φlocal
3d . Capital letter just after

the principle-quantum number means the orbital is used as ‘Head of MTO’; lowercase

means just used only as the ‘tail of MTO’.

The switches for columns labeled as occ and unocc. take 0 (not included) or 1 (included).

With the switch, we can construct two groups of orbitals, occ and unocc. In this sam-

ple GWIN V2 as for atom 1, {φ4s, φ̇4s, φ4p, φ4d, φ
local
3d , φcore

3s , φcore
3p } consist the group occ,

and {φ4s, φ4p, φ4d, φ
local
3d , φ4f} consists the group unocc. So the any product of combi-

nations {φ4s, φ̇4s, φ4p, φ4d, φ
local
3d , φcore

3s , φcore
3p } × {φ4s, φ4p, φ4d, φ

local
3d , φ4f} are included as

for the basis of the product basis. As for atom 2, {φ2s, φ2p, φ3d} × {φ2s, φ2p, φ3d, φ4f}
are included.

� Core section: (not worth to read, since we currently use no CORE2, A=B=C=0.)

Each line of the last section of Product BASIS forms

atom l n occ unocc ForX0 ForSxc :CoreState(1=yes, 0=no)
1 2 1 A x B C

At first you have to understand the concept of CORE1 and CORE2 in EQ.35 Ref.I.

However, in our recent calculations, we do not use “CORE2” generally. So, in such a

case, set A=B=C=0. And treat shallow cores (above Efermi−2Ry or so) as valence electron

by “local orbital method” in lmf.

� Be careful. Current version is inconvenient... Need to repeat mkGWIN lmf2 to generate

GWinput template when you add PZ (local orbital).

58

[(Note: you can skip here if you don’t use CORE2.)

Each of A,x,B,C takes 0 or 1. There are some possible combination of these

switches;

1. If you take (A x B C)= (1 0 1 1), then the core is included in core2. In

other words, this core is treated in the same manner of the valence electron.

2. If you take (A x B C)= (0 0 0 0), then the core is included in core1. The

(exchange only) self-energy related to this core is included in SEXcore.

C is the key switch which determine whether it is included in core1 or core2.

There could be another option.

3. If you take (A x B C)= (1 0 0 1). This core is in core2. But it is not

included in the calculation of D and W . This core is only included for SEX

and SEC calculations.

These three kinds of choices are reasonable ones but we can consider some another

choice. In the following, we show how these switches (A,B,C) affect executions

called from gw lmfh (essentially as same as gw lmf).

� hbasfp0(mode 3) :Product basis for exchange due to core.

We include the C=0 cores as a part of the product basis as if A=1 x=0.

� hsfp0(mode 3): exchange mode for core.

Σx only due to the C=0 cores are calculated.

� hbasfp0 (mode1): Product basis.

Only see the switch A and x. The product basis is generated from (occupied

× unoccupied), where A=1 core is included as one of the occupied basis.

� hsfp0 (mode 1): exchange mode.

Only see the switch C. Σx due to valence and due to C=1 cores are calculated.

� hx0fp (mode 1): W − v calculation.

Only see the switch B. W is calculates using all the valence and B=1 cores.

� hsfp0 (mode 2): correlation mode.

Only see the switch C. Σc due to valence and due to C=1 are calculated.

• After you perform gw_lmfh or anything, you find output files lbas by hbasfp0 (mode1),

and/or lbasc by hbasfp0 (mode3) for core. These contains important information about how

many and how product basis are chosen. E.g. ’grep nbloch lbas’ shows how many product

basis are used in the calculations.

11.7 ANFcond (we can skip here since we do not check this option now.

Need fix this if necessary.

This file is used in hx0fp0 in the calculation of W − v (or rather Π in the program) to specify

the antiferro condition.

Note : Now only for the case that (a translation vector + spin flip) is a symmetry opera-

tion.

This should be given by hand. For the cases of not antiferro, this file should not exist.

Even if ANFcond does not exists for antiferro case, hx0fp0 works but it requires about two

time computational efforts.

59

The existence of this file means the Antiferro condition is used for x0k

Product basis B({\bf r}-{\bf a}) is translated to B({\bf r}-{\bf a}-Af})= B({\bf r}-{\bf a}’-T_0})

1d0 1d0 1d0 ! Af=Antiferro translation vector in Cartesian.

1 2

2 1

3 4

4 3

The first line specifies the Antiferro translation vector. From the second line, we specify

that atom i in the primitive cell is mapped to what atom j(i) in the cell with the opposite

spin by the translation. In this case, j(1) = 2, j(2) = 1, j(3) = 4, j(4) = 3. You have to be

careful as for the true atomic position used in the GW calculations can be different from the

given atomic positions in ctrl.MnO. The true atomic positions is written in LMTO.

In the case of one-shot GW (gw lmf and gw lmfh), it may be better to set ”up only” QPE,

so that you only calculate QPE of up spins at the same time.

In the case of gwsc, we just calculate QPE for up spins automatically (QPNT section is

neglected).

60

12 Main Output Files of GW part

12.1 QPU

This is the main output13 in human readable format.

An example of one-shot GW by gw lmfh) is (In the case of QSGW, Z (Z = 1) is not

shown):

===

quasiparticle energies MAJORITY

===

E_shift= 0.4263273221017709D+00 0.6075150850568627D+00 0.7046628446164018D+00 eV

q state SEx SExcore SEc vxc dSE dSEnoZ eLDA eQP eQPnoZ eHF Z 2Z*Simg ReS(elda)

0.0 0.0 0.0 1 -29.56 -1.97 10.40 -20.22 -0.52 -0.90 -19.08 -19.42 -19.71 -30.81 0.58 0.95 -21.12

0.0 0.0 0.0 2 -30.52 -2.24 10.09 -21.53 -0.70 -1.14 -18.06 -18.58 -18.93 -29.72 0.61 0.96 -22.66

0.0 0.0 0.0 3 -20.67 -1.87 5.97 -16.85 0.19 0.28 -7.20 -6.83 -6.65 -13.32 0.67 0.66 -16.57

...

From the 6h line, we have the eigenvalue data. All of the unit of energy is in eV. We should

note that the zero-level of these values eLDA eQP eQPnoZ can be changed by hqpe. This eLDA

- E shift are the eigenvalues relative to a Fermi energy determined by the smearing method.

Detailed value of eLDA is in TOTE2.UP. Detailed value of eLDA- E shift is in TOTE.UP.

q : k vector

state: Band index n, which is from the lowest eigenvalue (not include cores).

SEx: = = 〈Ψkn|Σcore2+valence
x (r, r′)|Ψkn〉

SExcore: = 〈Ψkn|Σcore1
x (r, r′)|Ψkn〉

SEc: = 〈Ψkn|Σcore2+valence
c (r, r′, εn(k))|Ψkn〉

vxc: LDA exchange correlation energy. 〈Ψkn|V LDA
xc ([ntotal], r)|Ψkn〉

dSE: Znk× dSEnoZ

dSEnoZ: 〈Ψkn|Σcore1
x (r, r′) + Σcore2+valence

xc (r, r′, εn(k))|Ψkn〉 − 〈Ψkn|V LDA
xc ([ntotal], r)|Ψkn〉

= SEx + SExcore + SEc - vxc

eLDA: LDA eigenvalues. εn(k)

eQP: QP energy. εn(k)+dSE

eQPnoZ: QP energy without Z. εn(k)+dSEnoZ

eHF: HF energy of 1st iteration. εn(k)+SEx + SExcore -vxc

Z: Z factor. Znk

2Z*Simg: Quasi-particle life time. 2Znk × Im〈Ψkn|Σcore2+valence
c (r, r′, εn(k))|Ψkn〉

(Is this really the usual definition of the life time?—don’t believe me)

ReS(elda): Re〈Ψkn|Σcore1
x (r, r′) + Σcore2+valence

xc (r, r′, εn(k))|Ψkn〉

12.2 XCU

LDA exchange-correlation. Detailed data of above vxc.

12.3 SEXU

Exchange part of the self-energy due to valence electrons. Detailed data of above SEx.

12.4 SEXcoreU

Exchange part of the self-energy due to core. Detailed data of above SExcore.

13Note that QPU also implies QPD and so on. U is for up D is for down spins.

61

12.5 SECU

Correlation part of the self-energy. Detailed data of above SEc.

12.6 TOTE.UP (TOTE.DN)

This is a central output. It contains LDA and QP energies. These values are relative to a

Fermi energy determined by the smearing method. It contains two kind of QP energies QP

QPnoZ. The first line contains the Fermi energy in Ry determined by the smearing method. It

is also shown in the end of DOSACC.lda.

12.7 TOTE2.UP (TOTE2.DN)

This is a central output. It contains zero-level shifts from TOTE.UP. The first line contains

the Fermi energy in eV (= the Fermi energy in TOTE.UP but it is in Ry) and three energy

shifts E shift, which are the same values in the 4th line of QPU.

Note that all *.chk files are just to check calculations (not read in by successive executions).

12.8 DOSACC.lda

This lists all the eigenvalues in ascendant order. States with almost the same eigenvalues are

degenerated states. The 4th column contains number of electrons up to the eigenvalue.

12.9 DOSACC2.lda

This is similar with DOSACC.lda. But we remove the degeneracy.

12.10 Core ibas* l*.chk

Used core eigenfunctions.

12.11 VXCFP.chk

This contains eigenvalues and 〈ψkn|Vxc|ψkn〉 in both units, Ry and eV. See below.

12.12 The Fermi energies in this GWcode.

We mainly have two kinds of Fermi energy Esmear
FEERMI E

tetra
FEERMI.

1. At first eigenvalues given by lmfgw is in VXCFP.chk. You can see

%head VXCFP.chk

LDA exchange correlation

qvec ikp iband eigen VXC(ntotal) VXC(nvalence) eigen(eV) VXC(ntotal)(eV) VXC(nvalence)

0.0000 0.0000 0.0000 1 1 -0.96932423 -1.00727912 0.00000000 -13.18843159 -13.70483831 0.00000000

...

These are raw values. TOTE contains the eigenvalues but relative to a Fermi energy

Esmear
FEERMI which is determined by the smearing method. It is also shown at the top part

of output files lsx sf and lsc sf. And you also see the value at the end of DOSACC.lda.

This is the head of TOTE.UP;

62

%head TOTE.UP

43 8 8.520283353474250E-003

0.0000000 0.0000000 0.0000000 1 1 -0.1330435686590073D+02 -0.1322984339282777D+02 -0.1319228487875673D+02 0.6648715256312900D+00

0.0000000 0.0000000 0.0000000 2 1 -0.7555264915356062D+00 -0.6267595395613325D+00 -0.6009483309649021D+00 0.8330216344848770D+00

...

Here Esmear
FEERMI=8.520283353474250E-003. From the second lines, they are LDA eigen-

values and QP energies (Z included and Z=1); they are relative to the Esmear
FEERMI.

-13.18843159 eV - Esmear
FEERMI(which should be translated into in eV) = -0.1330435686590073D+02

eV. Here -13.18843159 is the value in VXCFP.chk shown above.

2. There is the another Fermi energy Etetra
FEERMI, which is used by mode 11 (or mode 1) of

hx0fp0 in gw lmfh. It is determined by heftet and stored in EFERMI.

3. hqpe gives TOTE2.UP and QPU. They contains the same values. You can see eLDA eQP eQPnoZ Z

not only in QPU but also in TOTE2.UP. At top lines of TOTE2.UP, you see

%head TOTE2.UP

43 8 0.1159252712507000D+00 0.7555207081466229D+00 0.6267572296579150D+00 0.6009467172357787D+00

0.0000000 0.0000000 0.0000000 1 1 -0.1254883615775411D+02 -0.1260308616316985D+02 -0.1259133816152095D+02 0.6648715256312900D+00

0.0000000 0.0000000 0.0000000 2 1 -0.5783388983382487D-05 -0.2309903417430093D-05 -0.1613729123328689D-05 0.8330216344848770D+00

0.0000000 0.0000000 0.0000000 3 1 -0.1369098933889923D-05 -0.6195200397129952D-07 0.2047424042528334D-06 0.8330216088297998D+00

0.0000000 0.0000000 0.0000000 4 1 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00 0.8330216340404680D+00

..

,where a number in first line Esmear
FEERMI= 0.1159252712507000D+00 eV =8.520283353474250E-

003 Ry, the same as the previous one. This is a case when you did hqpe with augment

4 (it means we set the 4th-band eigenvalue zero). Another 3 values in the first line are

shifts from TOTE. Shown eshift(eLDA) = 0.7555207081466229D+00 eV. E.g., the second

line shows

-0.1254883615775411D+02 eV= -0.1330435686590073D+02(in TOTE) + eshift(eLDA)

eV.

When you do hqpemetal, three shifts at the first line in TOTE2.UP is determined so as

to give the eigenvalues relative to the Fermi energies shown in EFERMI, EFERMI.QP1,

and EFERMI.QPz=1. These are Fermi energies by tetrahedron method.

As for gwband lmf, it recalculates eigenvalues for all q along SYML. Then

the default ”zerolevel” = Esmear
FEERMI - eshift(lda). Because the eigenvalues given by this band-

mode are presumably the same, we have

Shown LDA eigenvalue

= -13.18843159(raw data by band mode—same as that in VXCFP.chk) - zerolevel

= (-13.18843159 - EFERMIsmear) + eshift(lda).

= -0.1330435686590073D+02(this is in TOTE.UP) + eshift(lda)

= -0.1254883615775411D+02(this is in TOTE2.UP).

It means that values in TOTE2.UP recovers. But if raw data by band mode is different

from it, these is a trouble. It does not recover the values in TOTE2.UP(=QPU).

As for the QPE, we calculate the difference from LDA values in TOTE2.UP at first, and

add the difference to the Shown LDA eigenvalue.

63

13 mkGWIN lmf2 and its I/O Files

(QPNT.chk contains irreducible k point for given n1 n2 n3; KPTin1BZ.gwinit.chk contain all

k points in Brillouin Zone).

The purpose of the script mkGWIN lmf2 is to give a template GWinput.tmp. The script

is complicated because of historical reasons. However, its essential is simple; we calls three

executions in this script as

echo 0 | lmfgw si

echo 1 | gwinit
echo −100 | qg4gw
. We explain each by each.

13.1 echo 0|lmfgw

— makes SYMOPS LATTC CLASS NLAindx.

Input files

• GWIN0 : This is a file, which contains your supplied n1 n2 n3 when you invoke the script.
This file is given within the script of mkGWIN lmf2 (as ”here document”).

cat <<EOF >GWIN0
n1 n2 n3
$n1 $n2 $n3
cut
4.0 3.0
alpha
1
Number of bands
999 99999.0
999 3.0
EOF

• ctrl.si : Master input file of lmf calculation.

Output files

• LATTC : contains the information of primitive translation vectors, lmxa and konf. See ??

• SYMOPS : The point group operations. See ??

• CLASS : Equivalent atomic positions are called as ’class’. This small file contains a map

between atomic site and ’class’.

• NLAindx : This file contains indexes (pvalence, l, a) for orbitals in the MT. (pvalence is radial

function index, a is atomic site index). Eigenfunctions are expanded in this order.

• ldima : Number of MTOs for each atomic site. (this is used only from hqpe sc—QSGW

mode).

• ves* : not meaningful at this stage

• rhoMT* : not meaningful at this stage

13.2 gwinit

— Get GWIN V2.tmp and QPNT.tmp

Input files

• GWIN0 :

• LATTC :

• SYMOPS :

• NLAindx :

Output files

• GWIN V2.tmp : A part of GWinput.tmp

• QPNT.tmp : A part of GWinput.tmp

• (KPNTin1BZ.gwinit.chk) : check KPNT in the 1BZ.

If SYML exist, gwinit gives also a template QPNTforSYML.tmp suitable for such SYML.

Here SYML specify how to plot the energy band. See explanation for bandplot script.

64

Note that LATTC SYMOPS CLASS NLAindx are overwritten when you execute gw lmfh

because we repeat echo 0|lmf at the head of gw lmfh.

13.3 echo -100|qg4gw

— Generate GWinput.tmp

Input files

• GWIN0 : (copy of GWIN0.tmp by gwinit)

• GWIN V2 : (copy of GWIN V2.tmp by gwinit)

• QPNT : (copy of QPNT.tmp by gwinit)

Output files

• GWinput : (this is copied to GWinput.tmp)

This command ”echo -100|qg4gw” is a file converter from these two files into GWinput. And

it is copied to GWinput.tmp. (mkGIN lmf keeps GWinput if it exist before you invoke it.).

65

14 gwsc script and its I/O Files

In gwsc, we have a loop of QSGW self-consistency. Look into the gwsc script. In each iteration,

we perform these fortran programs;

NO_MPI=0 #this is used for non-mpi versions of fortran program.

self-consistent calculation for given Sigma(self-energy)

run_arg ’---’ $MPI_SIZE $nfpgw /lmf-MPIK llmf $TARGET

Preparation stage

argin=0; run_arg $argin $NO_MPI $nfpgw /lmfgw llmfgw00 $TARGET
argin=1; run_arg $argin $NO_MPI $nfpgw /qg4gw lqg4gw #Generate requied q+G v
argin=1; run_arg $argin $MPI_SIZE $nfpgw /lmfgw-MPIK llmfgw01 $TARGET

run_arg ’---’ $NO_MPI $nfpgw /lmf2gw llmf2gw #reform data for gw

Main stage of gw

argin=0; run_arg $argin $NO_MPI $nfpgw /rdata4gw_v2 lrdata4gw_v2 #prepare files
argin=1; run_arg $argin $NO_MPI $nfpgw /heftet leftet # A file EFERMI for hx0fp0
argin=1; run_arg $argin $NO_MPI $nfpgw /hchknw lchknw # A file NW, containing nw

Core part of the self-energy (exchange only)

argin=3; run_arg $argin $NO_MPI $nfpgw /hbasfp0 lbasC # Product basis generation
argin=3; run_arg $argin $MPI_SIZE $nfpgw /hvccfp0 lvccC # Coulomb matrix for lbasC
argin=3; run_arg $argin $MPI_SIZE $nfpgw /hsfp0_sc lsxC # Sigma from core1

Valence part of the self-energy Sigma

argin=0; run_arg $argin $NO_MPI $nfpgw /hbasfp0 lbas # Product basis generation
argin=0; run_arg $argin $MPI_SIZE $nfpgw /hvccfp0 lvcc # Coulomb matrix for lbas
argin=1; run_arg $argin $MPI_SIZE $nfpgw /hsfp0_sc lsx # Exchange Sigma
argin=11; run_arg $argin $MPI_SIZE $nfpgw /hx0fp0_sc lx0 $lx0_para_option #x0 part
argin=2; run_arg $argin $MPI_SIZE $nfpgw /hsfp0_sc lsc #correlation Sigma
argin=0; run_arg $argin $NO_MPI $nfpgw /hqpe_sc lqpe #all Sigma are combined.

run arg:

Here a subroutine of bash run arg was used, which is given in ecalj/lm7K; it just invoke

a command with the argument $argin (this is read by read(*,*) in fortran). In cases with

MPI_SIZE/ = 0, mpirun is invoked. Console out put go to l* files. For example,

argin=2; run_arg $argin $MPI_SIZE $nfpgw /hsfp0_sc lsc #correlation Sigma

invokes hsfp0 sc with argument ’2’ by mpirun with the -np $MPI SIZE. Console outputs are

written into logfiles such as lqpe. $nfpgw contains path to the execution binaries.

In the following, We explain input/output files for each fortran program. Note that “echo

0|lmfgw” means invoking lmfgw with argin=0.

66

14.1 echo 0| lmfgw si

See Sec.13.1.

14.2 echo 1| qg4gw

This makes q points, and G vectors for these q. (q was k in previous sections.) Main routine

of qg4gw is fpgw/main/qg4gw.m.F and calls fpgw/gwsrc/mkqg.F

Input files

• GWinput :

• LATTC :

• SYMOPS :

Output files

• QGpsi : (bin) q and G vector for the eigenfunctions.

• QGcou : (bin) q and G vector for the Coulomb matrix

• Q0P : offset-Γ points which are the replacement of the q=0 points. See section??.

• QIBZ : q points in the Irreducible BZ.

• BZDATA : (bin) BZ data for integration (include tetrahedrons if necessary). See e.g.

main/hx0fp0.sc.F and search ”call read BZDATA”, which is a readin routine of this file de-

fined in rwbzdata.F.

• KPTin1BZ.mkqg.chk : list of q in the 1st BZ for check.

• QBZ : q point in the 1st BZ.

• EPSwklm : Required information for the BZ integration (mainly in order to evaluate the

weight in the Γ cell). See Eq.xxx in [?].

14.3 echo 1|lmfgw si

Calculate eigenfunctions, eigenvalues and 〈ψ|HKS|ψ〉
Input files

• ctrl.si :

• rst.si : (bin) Restart file of the lmf calculation. It contains all information

• sigm.si : (bin) If this exist and

• QGpsi,QGcou,Q0P : :

• NLAindx : :

Output files

• gwa.si : (bin) atomic data

• gwb.si : (bin) band data

• gw1.si : (bin) 〈ψ|HKS|ψ〉
• gw2.si : (bin) 〈ψ|HKS − Vxc(ntotal)|ψ〉.
• vxc.si,evec.si : (bin) used in hqpe.sc.m.f as ”v xc” and ”evec”).

vxc.si contains 〈ψ|Vxc(ntotal)|ψ〉 including off-diagonal part. evec.si contains eigenfunctions.
• normchk.si : norm check (only for check) This is like this

> head -20 normchk.si
IPW IPW(diag) Onsite(tot) Onsite(phi) Total

0.436015 0.805123 0.563972 0.562573 0.999988
0.339134 0.620353 0.660515 0.656881 0.999649
0.339133 0.620353 0.660516 0.656882 0.999649
0.339133 0.620353 0.660516 0.656882 0.999649
0.507738 0.648515 0.492040 0.487673 0.999778

...

This check is sometimes important for debugging and to determine the cutoff parameter

QGcut psi . The first line (corresponding to 1st band of 1st q point) means that total nor-

malization almost unity = 0.999988 = 0.436015 + 0.563972. Because we expand the MTO

by IPW, the normalization is a bit different from unity, especially for higher bands. You can

see that it get closer to unity for larger QGcut psi, though it does not reach to unity because

of some contribution of the higher angular momentum contribution within MT. [Values of

Onsite(phi) are not correctly shown in the case when you use local orbital.]

Due to historical reason, data in vxc.si and exec.si and others contains duplicated data.

67

14.4 lmf2gw

All the required information are stored into DATA4GW V2 and CphiGeig.

Input files

• gwa.si :

• gwb.si :

• gw1.si :

• gw2.si :

• Q0P :

• CLASS :

• NLAindx :

Output files

• DATA4GW V2 : (bin) Main data for GW calculations.

I/O of DATA4GW V2 is controlled by gwinput.f, which contains detailed information.

• CphiGeig : (bin) Eigenfunctions for GW calculations.

• VXCFP.chk : Eigenvalue and Vxc check (only used for check)
It is like this;

LDA exchange correlation

qvec ikp iband eigen VXC(ntotal) VXC(nvalence) eigen(eV) VXC(ntotal)(eV) VXC(nvalence)

0.0000 0.0000 0.0000 1 1 -0.68505346 -0.91850436 0.00000000 -9.32070032 -12.49698668 0.00000000

0.0000 0.0000 0.0000 1 2 0.19292662 -0.99853478 0.00000000 2.62492096 -13.58586453 0.00000000

0.0000 0.0000 0.0000 1 3 0.19292763 -0.99853469 0.00000000 2.62493477 -13.58586334 0.00000000

0.0000 0.0000 0.0000 1 4 0.19292777 -0.99853461 0.00000000 2.62493664 -13.58586222 0.00000000

...

Here VXC(nvalence) is not used now. The eigenvalue in eigen is in Ry.

— This is the end of the preparation stage. —

From here, the main stage.

14.5 rdata4gw v2

— Read DATA4GW V2 and some files, and decompose it into files required in the following

GW steps. (checked! dec2014)

Input files

• GWinput :

• DATA4GW V2 :

• CphiGeig :

• QGpsi :

• QGcou :

• Q0P :

• QIBZ :

• SYMOPS : points group operations.

Output files

• hbe.d : data size

• Core ibas* l*.chk : core eigenfunctions just for check.

• LMTO : basic date for the crystal.

• EValue : (bin) valence eigen value

• ECORE : core data and core eigenvalues

• CPHI : (bin) Coefficients of eigenfunctions as for the atomic-like argumentation waves in

MTs’.

• GEIG : (bin) Coefficients of eigenfunctions as for IPW.

• PHIVC : (bin) All the radial functions.

• @MNLA CPHI : index set for CPHI. This is not refereed just a check write.

• @MNLA core : index set for core. This is not refereed just a check write.

• VXCFP : (bin) this is for diagonal elements of V LDA
xc (ntotal).

• PPOVLI.* : (bin) Overlap matrix of IPW. xxxxxxxxxx

68

• PPOVLG.* : (bin) PPOVLG Overlap matrix xxxxxxxxxxoxf IPW. not exactly the the

overlap matrix. see around line 500 in rdata4gw.m.f

• PPOVL0 : (bin) xxxxxxxxxxxxx

• HVCCIN : (bin) Required inputs for hvccfp0. Information in this files.

• NQIBZ : q point info. Only used for parallel test mode.

• normchk.dia : Norm check. These numbers should be almost the same as those in normchk.si

These files are input for the following steps. The name of file fooU means that it relates to

up-spin. We have fooD files in the case of spin-polarized calculation with nspin=2.

14.6 echo 1|heftet

— Get the Fermi energy EFERMI by tetrahedron method. It is used in hx0fp0.

Input files

• EVU :

• BZDATA :

• GWinput :

• ECORE : (dummy)

• SYMOPS : (dummy)

• LMTO :

• hbe.d :

Output files

• EFERMI : contains Fermi energy given by the tetrahedron method. It is used in hx0fp0

but not in hsfp0.

• DOSACC.lda,DOSACC2.lda : They are lists of the all the eigenvalues from the bottom.

DOSACC2.lda is a list to show only the un-degenerated eigenvalues. They are just check write.

But it is an indicator for you to determine esmr in GWinput.

14.7 hchknw

— Calculate the required number of ω points along real axis.

This NW is not essentially used in gw lmfh (but required as a dummy file). Only used in

gw lmf.

Input files

• BZDATA :

• GWinput :

• ECORE : (dummy)

• SYMOPS : (dummy)

Output files

• NW : contains number of ω points.

14.8 echo 3|hbasfp0

— Make product basis.

Mode 3 is for the core states. It generate a product basis on each MT suitable to expand

to calculate the exchange part due to core. See explanations for the input file of GWinput.

Input files

• LMTO :

• PHIVC :

• GWinput :

Output files

• BASFP* : (bin) Product basis functions

• PPBRD V2 * : (bin) Radial integrals on each MT, symbolically written as
∫
φ(r)φ(r)B(r)dr

• PHIV.chk : Valence radial functions (for check).

69

14.9 echo 0| hvccfp0

— Calculate the Coulomb matrix in the Mixed basis

Input files

• HVCCIN :

• Q0P :

• BASFP* :

Output files

• VCCFP : The Coulomb matrix expanded in the mixed basis

• Mix0vec : This is used only for dielectric-constant calculation (mode 2 or 3 of hx0fp0). This

contains the expansion of the plane wave exp(iqr) in the mixed basis. See Usuda’s note.

14.10 echo 3|hsfp0

— Exchange part of the self-energy for the core

Input files

• GWIN V2,LMTO,ECORE :

• CLASS :

• hbe.d :

• Q0P :

• PPBRD V2 * :

• CPHI :

• GEIG :

• VCCFP :

• PPOVL :

Output files

• SEXcoreU : The core part of the exchange self-energy for q and band index specified in

<QPNT>. See ??.

14.11 echo 0|hsfp0

— Make product basis for the valence part.

14.12 echo 1|hsfp0

— Exchange part of the self-energy for the valence part.

Output files

• XCU : The LDA exchange self-energy for q and band index specified in <QPNT>. See ??.

• SEXU : The valence part of the exchange self-energy for q and band index specified in

<QPNT>. See ??.

14.13 echo 11|hx0fp0

— Screened Coulomb interaction W (Sergey mode)

Input files

• GWinput, LMTO, ECORE, EVU :

• NW : dummy

• hbe.d :

• Q0P :

• PPBRD V2 * :

• CPHI,GEIG :

• PPOVL :

• VCCFP :

• ANFcond : (optional) This file is to specify antiferro condition. This should not exist for

other cases. This file should be given by hand.

Output files

• WV.d : size of the dielectric function

• WVR : (bin) W − v in the expansion of mixed basis along the real axis

70

• WVI : (bin) W − v in the expansion of mixed basis along the imaginary axis

14.14 echo 12|hsfp0

— Correlation part of the self-energy(Sergey mode)

Input files

• GWinput, LMTO, ECORE, SYMOPS : These are readin by genallcf v3.

• CLASS, hbe.d, EVU, Q0P :

• PPBRD V2 * :

Radial integrals on each MT, symbolically written as
∫
φ(r)φ(r)B(r)dr. These are gener-

ated by hbasfp0.

• CPHI,GEIG :

• PPOVL :

• WV.d, WVR, WVI :

Output files

• SECU : The correlation part of the self-energy for q and band index specified in <QPNT>.

See ??.

14.15 echo 0|hqpe

— Summarize the output

Input files

• SEXcoreU,XCU,SEXU,SECU : See ??.

Output files

• QPU : The QP energies and related value summary in human interface. See ??.

• TOTE : The detailed values of the QP energies. See ??.

• TOTE2 : The detailed values of the QP energy. See ??. This is used for bndplot.

NOTE: For example, if you do {echo 4$|$hqpe}{hqpe}, it just shift zero level of QPE, so

that 4th line (counted from top) eigenvalue (in QPU) is to be zero.

71

15 Check list for convergence on GW calculations

Results could be dependent on cutoff parameters in GWinput. In my opinion, generally speak-

ing, it is so easy to have convergence more than ∼ 0.1eV for band gap...

� Number of k points n1n2n3 .

Probably 4 × 4 × 4 (or 6 × 6 × 6) are reasonable choice for insulator in the case of two

atoms such as GaAs. In other words, ‘”used periodic cell volume” = 4 × 4 × 4× (# of

atoms) × (Volume per atom)”. For example, for 2× 23 = 16 atoms per cell, we can use

2× 2× 2 instead of 4× 4× 4 (this is the same as in the case of LDA).

For metals, 12× 12× 12 or more per atom may be required. But it depends on case by

case.

� MTO’s and APWs. Basis for eigenfunctions.

If we like to get “best converged results, we may need to use large enough MTO’s. (I

think the default setting is reasonable; but there is a room to change MTO settings in

ctrl.*.). But, in cases, we can not use large APW cutoff (pwemax) more than 3.0 ∼ 4.0

Ry because of poor linear dependency of basis set (calculation in LDA level fails). In

such a case, we need to use “smaller MT radius R=”. Then we may need semi-core as

local orbital when “its spillout in the outside of MTs is too large”.

In GWinput, we can set the number of unoccupied states which you take into account by

emax chi0 , emax sigm , nband chi0 , and nband sigm . But we usually unset them

except emax sigm for gwsc.

(We may need a kind of completeness of the basis set; the completeness could be impor-

tant from the view of ‘Coulomb hole’ picture.)

NOTE: Current PMT-QSGW method [?] expand the static version of self-energy of

QSGW just in the basis of MTO’s (no APWs). Thus the expansion can be unsatisfactory

(it depends on case by case, and required convergence). In such a case, we inevitably

have to use empty spheres (MTO’s) which is for empty region.

� Cores.

We usually use all cores as core1 (exchange only core). If necessary, it is better to treat

shallow cores by the local orbitals (such cores are treated as valence).

—followings are obsolate —

If we treat cores by core2 (not only for exchange, but also in dielectric functions),

we have to be careful about the core wave orthogonalization with respect to valence

eigenfuncitons; this is a little complicated; probably it is better not to use core2).

(This is related to CoreOrth (only for core2). If it affects so much, D function might

be too poor due to the poor orthogonality condition between core and valence.) (NOTE:

CoreOrth is not maintained recently)

————-

� QpGcut psi IPW cutoff to expand eigenfuncitons in the interstitial region. We usually

use QpGcut_psi 4.0. Usually not so bad. Larger is better but expensive. You may test

calculations with QpGcut_psi 3.0, and how much difference of results.

� QpGcut cou IPW cutoff to expand the Coulomb interaction in the interstitial region

(Mixed product basis(MPB) consist of this IPW and PB). interstitial region. We usually

use QpGcut_cou 3.0. Usually not so bad. Larger is better but expensive. You may test

calculations with QpGcut_cou 2.5, and how much difference of results.

� Product basis section.

At least, lcutmx=4 will be necessary for atoms with d electrons. (but lcutmx=2 look

reasonable for oxygen, lcutmx=1 for hydrogen. Need check).

� esmr .

In our experience, esmr=0.003000 (default) is reasonable. But there is a room to check

stability on it for metals. In principle, for larger n1n2n3, we can use smaller esmr.

72

� dw, omg c niw

It will be worth to try to check how much the results changed due to them. But usually

dw=0.005, omg_c=0.04 is not so bad a choice. As for niw=10 seems to be not so bad

usually, but it is safer to check the convergence on it (test cases with niw=6,10,12,16).

� deltaw . ∼ 0.01 a.u. will be not so bad. See two Z values shown in SXCU. It is better

to try to check how about the dependence on this.

� chi regqbz off . (on is default). If off, we use off-Gamma mesh (Gamma point is be-

tween mesh points) for dielectric functions when we perform GW or QSGW. “chi regqbz

off” may accelerate convergence on number of k points.

� PWMODE=1 in ctrl This used fixed number of G vector determined at q=0

73

16 Linear response calculations

With these scripts for linear response calculations, eps*, we can calculate q-dependent di-

electric funciton ε(ω,q) (and v, W) (and χ for spin fluctuation). But (because of numerical

reason), we can not use q = 0 limit. (if |q| is too small, we have numerical problem, zero

divided by zero, because we have not implemented the version to use q = 0.)

� eps lmfh

Dielectric function epsilon with local field correction. Expensive calculation (we may

need to reduce number of wing parts in future...).

� epsPP lmfh

epsilon without local field correction. 1− 〈eiqr|v|eiqr〉〈eiqr|
(
χ0
)
|eiqr〉

� epsPP lmfh chipm

For spin susceptibility. This essentially calculate non-interacting spin susceptibility.

Then it is used for the calculation of full spin susceptibility with util/calj_*.F programs

(small quick programs). See spin wave paper. See spin susceptibility section Sec.??.

� (not maintained now; we will recover this)eps lmfh chipm

This gives full non-interacting spin susceptibility. Testing. We have to determine U

(Stoner I) for the determination of full spin susceptibility. TDLDA? or so?

� (This is old mode --- not maintained) epsPP lmfh chipm q

For spin susceptibility, spin susceptibility 〈eiqr|χ(q, ω)|eiqr〉 In this script, You have to

assign that isp=1 is majority, isp=2 is minority. This is with long wave approximation.

———————

• We use the histogram method (the Hilbert transformation method); we first calculate its

imaginary parts with the tetrahedron technique for dielectric functions. Then we get its real

part by the Hilbert transformation.

You need to choose HisBin dw,HisBin ratio . The width of histogram bins are getting larger

when omega gets larger. dw is the size of histogram-bin width at omega=0. At omega=omg c,

its width gets twiced.

To plot dielectric function with reasonable resolution, it might be better to set dw 0.001

and omg_c 0.1 for example. You may have to choose small enough omega for spin wave mode

as 0.001 Ry (Or smaller). omg c is given like 0.05 Ry or so. But sometimes it can be like 1Ry.

• epsPP lmfh only calculation an matrix element of dielectric funciton for exp(iqr). Thus very

faster than eps lmfh mode. It uses a a special product basis set for cases without inversion

(problem is in how to expand exp(iqr) in the MPB; the product basis is not from phi and

phidot, but from spherical Bessel functions).

In *_lmfh_* modes(I now use little for *_lmf_* modes), you can use small enough delta.

Use small enough delta (=-1e-8 a.u.) for spin wave modes (also you can use it for

dielectric function and GW). This is necessary because pole is too smeared

if you use larger delta.

16.1 eps lmfh, epsPP lmfh: the dielectric functions

You can invoke the script, e.g. as ”eps lmfh si”.

—————-

Specify q point in <QforEPS> or so. Mesh for ω is specified by dw, omg c .

The obtained data are in EPS*.dat and EPS*.nlfc.dat. EPS*.nlfc.dat contains the result

without local-field correction EPS*.dat contains the result with local-field correction (this is

generated only for eps_lmfh. Both of them contains

q(1:3), ω, Re(ε) Im(ε), Re(1/ε), In(1/ε)

in each line.

� This code works OK only for q is near 0. Be careful for q → 0 limit. Too small q can

give strange spectrum at high energy (real part is affected by it)

74

Because q → 0 gives too large cancellation effects (the denominator and numerator

go to zero—it means we need very accurate orthogonalization between occupied and

unoccupied states). This is a kind of disadvantage of our method (though there is an

advantage— our code can calculate dielectric function even for metal as far as you use

large enough number of k point.)

� The calculate of dielectric functions usually requires so many k point. For example, for

Si, n1 n2 n3 = 4 4 4 is too small. It gives too large dielectric constants ∼ 19.4 though

the converged value should be ∼ 13. (we need 10x10x10 or more like 20x20x20 for some

reasonable results). For GaAs, we observed that reasonable ε(ω) requires rather large

number of q points like 15x15x15 or 20x20x20 for n1n2n3 . This is too time-consuming

to get result (but you can use “very small product basis”(just sp polarization for this

purpose; it makes speed up so much). Or, you can calculate ”ε(ω) without LFC”. See

section for eps PP lmfh.

� Core orthogonalization problem (only when core2 is used)

—- CoreOrth is not maintained recently — CoreOrth gives so serious effect for ε(ω),

if you include some cores as ”core2” in the product basis setting. (This means that you

includes transitions from ”core2 to valence” in the calculation of ε(ω)).

Then you have to use ”CoreOrth on”. Without it, you will have rather large imaginary

part at rather high energy Such transitions from core to higher valence bands is artificial

due to the incomplete orthogonality between core and the higher bands. However, shal-

lower d semi-core might be deformed too much by this option. Try to plot Core *.chk

files, which contains core radial functions. Anyway, it is better to treat shallow core as

valence by “local orbital”.

16.2 epsPP lmfh: the dielectric function(No LFC— faster)

You can calculate ε without LFC by epsPP lmfh. It is very faster than eps lmfh.

To calculate ε(q, ω) without LFC accurately, the best basis set for the expansion of the

Coulomb matrix within MT is apparently not the product basis, but the Bessel functions

corresponding to the plane waves exp(iqr). We use such a basis in this mode. However,

our experience shows that the changes are little even with the usual product basis (we don’t

describe this here).

16.3 How to calculate correct dielectric funciton?

(this subsection is essentially OK... but need to clean it up. dec2014)

There are prolems to calculate correct epsilon.

At first, we talk about epsPP_lmfh, which is No LFC. Main problem are

1.Convergence for number of k point(specified by n1n2n3).

Roughly speaking, 20x20x20 is required for not-so-bad results for Fe and Ni.

It is better to do 30x30x30 to see convergence check.

However, in the case of ZB-MnAs (maybe because of simple structure around Ef),

it requires less q points.

figs are for GaAs.

fig001: n1n2n3 convergence for Chi_RegQbz = on case.

fig002: n1n2n3 convergence for Chi_RegQbz = off case.

(Chi_RegQbz in explained in General section in this manual).

As you see, k points convergence looks a little better in Chi_RegQbz=off

(mesh not including gamma). However a little ploblem is that its thereshold around

0.5eV is too high and slowly changing.

75

fig003: Alouanis’(from Arnaud) vs. ‘‘Chi_RegQbz = on’’ vs. ‘‘Chi_RegQbz = off’’

As you see, the threshold of the Red line (20x20x20 Chi_RegQbz=on) and Alouani’s

are almost the same, but the red line is too oscilating at the low energy part.

On the other hand, ‘‘Chi_RegQbz = off’’ in Green broken line is not so satisfactory

at the low energy part.

fig.gas_eps_kconf.pdf shows the convergence behevior of epsilon for

2.$q \to 0$ convergence (this is related to whether Chi_RegQbz=on or off).

If you use very small q like q=0.001 is GaAs, it can cause a problem.

Use q=0.01 or larger (maybe q=0.02 or more is safer).

Very small q can give numerical error for high-energy region.

In fig004, we show the high energy tail part of Im $\epsilon(\omega)$ for GaAs case.

At q=0.01 (this means q= 2*pi/alat * (0 0 0.01)), the imaginary part

is a little too large . Less than 80eV, q=0.02 gives good results when compared with

other high q results, though it still has noise above 80eV.

In fig005, I showed the same results compared with Alouani’s (his is up to 40eV).

Both gives rather good agreements. As you see, q=0.06 or above might be necessary

to get reasonable convergence for high energy part abouve 40eV.

We have to be careful for this poorness in high energy part--- it may effect

low-energy Re[\epsion] through KK relation. However this can be very small

ehough.

In fig.gas_eps_qconv.jpg, we checked the convergence of eps (\omega=0,q) for q \to 0.

As you see, it gives convergence, however, q=0.01 is a little out of

curve---this should be because of the poorness in the high energy part.

so q=0.02 or q=0.03 is safer, and you can get eps within 1 percenr accuracy.

3. Including Core for dielectric constant is dangerous.

It can cause very poor results if you include core part in GWinput.

You need to include core just as valence (with local orbital).

In fig008, we showed core effects. It starts from \approx 16eV

(this is core to conduction transition).

fig007 showd the check about the q point dependence---even with large q,

it would not change.

These shows that the core excitation can have larger energy range.

This is in contrast to the valence case

(then the most of excitaion is limited to less than 10eV).

We have to be careful for such high-energy exciation... The LMTO basis might

be not so good for high energy.

4. basis set.

Use QpGcut_psi \approx 3.0 a.u. or so (as same as GW calculation).

In the case of epsPP* mode,

QpGcut_cou can be very small--- In our codes now,

ngc>=1 should be for all q vector shown in lqg4gw02 (output of echo 2|qg4gw).

[In principle, it should be only for the q vector for which we calculate epsilon.

But there is a technical poorness in our code---

(maybe) a problem here; the plane-wave part of the eigenfunction generated

in lmfgw is not correctly passed to lmf2gw when ngc=0].

76

-- eps_lmfh: including LFC ----------------------------------

To include eps with LFC, do eps_lmfh.

But lcutmx=2 seems to be good enough to get 0.5 percent error (maybe better than this).

Test it 10x10x10 or so. (I need to repeat if necessary).

Further you can use smaller QpGcut_cou like 2.2 or so,

with rather smaller product basis (up to p timed d, not including f).

Note: epsPP_lmfh is designed to use good basis to calculate eps

without LFC. This is usually in agreement with what you obtained by eps_lmfh;

however it can give slight difference when you use small product basis.

---Summary --------------------

So in conclusion, I think a best way to do is

1. set q=0.02 [q=2pi/alat(0 0 0.02)] or so for GaAs case.

If you want to check, do q=0.03 and q=0.06 also.

‘‘Chi_RegQbz = off’’ is better for matrials like GaAs with direct gap.

2. You can use small QpGcut_cou but all ngc should be one or more.

3. As for the Product basis setting in epsPP* scripts, only

lcutmx and tolerance (this can be like 0.001 or so) are relevant.to determine eps(omega=0, q=0).

E.g. set lcutmx=4 or so.

5. To get eps with LFC, set QpGcut_cut as xxx, and set lcutmx=2 where

4. Do nk=20 18 16 and take interpolarion

(occupied sp) \timex (unoccupied spd) are included.

But correct EPS*.nolfc.d is rather from epsPP_lmfh script.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10 12 14

--
-p

lo
t-

--
--

-

gaseps0 ChiRegQbz=on (default)

"gasepstest0202020/EPS0001.nolfc.d" using ($4*rydb):($6)
"gasepstest0181818/EPS0001.nolfc.d" using ($4*rydb):($6)
"gasepstest0161616/EPS0001.nolfc.d" using ($4*rydb):($6)
"gasepstest0101010/EPS0001.nolfc.d" using ($4*rydb):($6)

77

fig001

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10 12 14

--
-p

lo
t-

--
--

-

gaseps0 ChiRegQbz=off

"gaseps0bz2161616/EPS0001.nolfc.d" using ($4*rydb):($6)
"gaseps0bz2181818/EPS0001.nolfc.d" using ($4*rydb):($6)
"gaseps0bz2202020/EPS0001.nolfc.d" using ($4*rydb):($6)

fig002

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10 12 14

--
-p

lo
t-

--
--

-

gaseps0 ChiRegQbz=on(bz2) vs. off vs. Alouani’s

"gasepstest0202020/EPS0001.nolfc.d" using ($4*rydb):($6)
"gaseps0bz2202020/EPS0001.nolfc.d" using ($4*rydb):($6)

"e2ofGaAsRPAwithoutLFPAW.txt" using ($1):($2)

fig003

78

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120 140

--
-p

lo
t-

--
--

-

gaseps0bz21616164 High energy part (numerical error)

gaseps0bz2161616 q=0.01
q=0.02
q=0.03
q=0.06
q=0.12
q=0.18

fig004

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120 140

--
-p

lo
t-

--
--

-

ChinoRBZ=T 161616 noGd3d compared with Alouai ---Tail part

q=0.02
q=0.03
q=0.06
q=0.12

Alouani’s

fig005

79

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 20 40 60 80 100 120

--
-p

lo
t-

--
--

-

/home/takao/DATA/gaseps0bz2161616 4 6

alouanis
161616high q=0.02

161616 q=0.12

fig007

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40 45 50

--
-p

lo
t-

--
--

-

Effects of Gd3d

gaseps0bz21616162noGa3d q=0.02
gaseps0bz21616162 q=0.02

fig008

80

17 Utility

1. structure tool viewvesta,ctrl2vasp,vasp2ctrl

2. Other calculation examples A recent paper by Deguch et al [12] contains a link to a

sample package.

3. cif to PROCAR

./cif2cell --vasp-cartesian --vasp-format=5 cifs/BaTiO3_cubic.cif

81

Index

gwinit, 65

hbasfp0, 70, 71

hchknw, 70

heftet, 70

hqpe, 72

hsfp0, 71, 72

hvccfp0, 71

hx0fp0, 71

lmf2gw, 69

lmfgw00, 65, 68

lmfgw01, 68

qg4gw, 66

qg4gw00, 68

rdata4gw v2, 69

MNLA core, 69

MNLA CPHI, 69

<PRODUCT BASIS> section, 58

<QPNT> section, 55

(KPNTin1BZ.gwinit.chk), 65

ANFcond, 71

ANFcond (we can skip here since we do not check this option now. Need fix this if necessary., 60

BASFP*, 70, 71

BZDATA, 34, 68, 70

CLASS, 35, 65, 69, 71

CLASS, hbe.d, EVU, Q0P, 72

CPHI, 69, 71

CPHI,GEIG, 71, 72

Core ibas* l*.chk, 63, 69

CphiGeig, 34, 69

DATA4GW V2, 34, 69

DOSACC.lda, 63

DOSACC.lda,DOSACC2.lda, 70

DOSACC2.lda, 63

ECORE, 69, 70

EFERMI, 70

EPSwklm, 68

EVU, 70

EValue, 69

GEIG, 69, 71

GWIN0, 65, 66

GWIN V2, 66

GWIN V2,LMTO,ECORE, 71

GWIN V2.tmp, 65

GWinput, 34, 66, 68–70

GWinput, LMTO, ECORE, EVU, 71

GWinput, LMTO, ECORE, SYMOPS, 72

GWinput.tmp, 49

General section, 51

HAMindex, 34

HVCCIN, 70, 71

KPTin1BZ.mkqg.chk, 68

LATTC, 65, 68

LMTO, 69, 70

Mix0vec, 71

NLAindx, 65, 68, 69

NQIBZ, 70

NW, 70, 71

PHIV.chk, 70

PHIVC, 69, 70

PPBRD V2 *, 70–72

PPOVL, 71, 72

PPOVL0, 70

PPOVLG.*, 70

PPOVLI.*, 69

Q0P, 34, 68, 69, 71

QBZ, 68

QGcou, 34, 68, 69

QGpsi, 34, 68, 69

QGpsi,QGcou,Q0P, 68

QIBZ, 34, 68, 69

QPNT, 66

QPNT.tmp, 65

QPU, 62, 72

SECU, 63, 72

SEXU, 62, 71

SEXcoreU, 62, 71

SEXcoreU,XCU,SEXU,SECU, 72

SYMOPS, 34, 65, 68–70

TOTE, 72

TOTE.UP (TOTE.DN), 63

TOTE2, 72

TOTE2.UP (TOTE2.DN), 63

VCCFP, 71

VXCFP, 69

VXCFP.chk, 63, 69

WV.d, 71

WV.d, WVR, WVI, 72

WVI, 72

WVR, 71

XCU, 62, 71

ctrl.si, 49, 65, 68

gw1.si, 68, 69

gw2.si, 68, 69

gwa.si, 68, 69

gwb.si, 68, 69

hbe.d, 69–71

ldima, 65

normchk.dia, 70

normchk.si, 68

rhoMT*, 65

rst.si, 68

set QPNT for eps mode (QforEPS section), 57

sigm.si, 68

ves*, 65

vxc.si,evec.si, 68

82

References

[1] Takao Kotani, Hiori Kino, and Hisazumu Akai. Formulation of the augmented plane-wave and muffin-

tin orbital method. Journal of the Physical Society of Japan, 84(3):034702, March 2015.

[2] Takao Kotani. Quasiparticle self-consistent GW method based on the augmented plane-wave

and muffin-tin orbital method. J. Phys. Soc. Jpn., 83(9):094711 [11 Pages], September 2014.

WOS:000340822100029.

[3] Takao Kotani, Mark van Schilfgaarde, and Sergey V. Faleev. Quasiparticle self-consistent gw method:

A basis for the independent-particle approximation. Physical Review B, 76(16):165106, 2007.

[4] Fabien Bruneval and Matteo Gatti. Quasiparticle self-consistent GW method for the spectral prop-

erties of complex materials. In Cristiana Di Valentin, Silvana Botti, and Matteo Cococcioni, editors,

First Principles Approaches to Spectroscopic Properties of Complex Materials, volume 347, pages

99–135. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[5] T. Kotani and M. van Schilfgaarde. All-electron GW approximation with the mixed basis expansion

based on the full-potential LMTO method. Solid State Communications, 121(9-10):461–465, 2002.

[6] Christoph Friedrich, Markus Betzinger, Martin Schlipf, Stefan Blügel, and Arno Schindlmayr. Hybrid

functionals and GW approximation in the FLAPW method. Journal of physics. Condensed matter :

an Institute of Physics journal, 24(29):293201, July 2012.

[7] Takao Kotani and Mark van Schilfgaarde. Fusion of the LAPW and LMTO methods: The augmented

plane wave plus muffin-tin orbital method. Physical Review B, 81(12):125117 (2010) [5 pages], March

2010.

[8] José M. Soler and Arthur R. Williams. Simple formula for the atomic forces in the augmented-plane-

wave method. Phys. Rev. B, 40(3):1560–1564, Jul 1989.

[9] José M Soler and Arthur R Williams. No Title. Phys. Rev. B, 42:9728, 1990.

[10] Takao Kotani, Hiori Kino, and Hisazumu Akai. Formulation of the Augmented Plane-Wave and

Muffin-Tin Orbital Method. Journal of the Physical Society of Japan, 84(3):034702, March 2015.

[11] J. Rath and A.J. Freeman. Generalized magnetic susceptibilities in metals: Application of the analytic

tetrahedron linear energy method to Sc. Phys. Rev. B, 11:2109, 1975.

[12] D Deguch, K Sato, H Kino, and T Kotani. Accurate energy bands calculated by the hybrid quasipar-

ticle self-consistent GW method implemented in the ecalj package. Journal of the Physical Society of

Japan, page accepted, 2016.

83

	Introduction
	Uniqueness of the ecalj package.
	What do we expect for QSGW?

	Rule in this manual
	What can we do with the ecalj package?

	Install
	Binaries and Scripts
	tests
	Directory structure

	Theory (note)
	LDA/GGA calculations and Plots
	Write crystal structure file, ctrls
	Generate default ctrl from ctrls by ctrlgenM1.py
	crystal structure checker: lmchk
	ctrl file
	Run LDA/GGA calculations, and get convergence
	DOS, PDOS plot
	Band plot
	syml genearator

	Useful samples: ecalj/MATERIAL/
	How to add spin-orbit coupling?
	PROCASR (VASP format) generator
	efermi.lmf
	Effective mass calculation
	density and |eigenfunction|2 plot
	LDA+U
	QSGW after LDA+U
	partially occupied core-hole

	How to run QSGW calculation?
	GWinput
	Run gwsc script
	Spectrum function: How to calculate qn|()|qn

	gwsc script to perform QSGW
	outputs of gwsc
	Preparation stage of gwsc
	Main stage of gwsc
	Other functions (or scripts)

	Usage problems, QandA error messages.
	Cautions for usage
	lmf –help

	Wannier function
	lwmatK1 and lwmatK2

	ctrl file details
	How to set local orbitals

	GWinput details
	generate a template of GWinput
	overview of GWinput
	General section
	<QPNT> section
	set QPNT for eps mode (QforEPS section)
	<PRODUCT_BASIS> section
	ANFcond (we can skip here since we do not check this option now. Need fix this if necessary.

	Main Output Files of GW part
	QPU
	XCU
	SEXU
	SEXcoreU
	SECU
	TOTE.UP (TOTE.DN)
	TOTE2.UP (TOTE2.DN)
	DOSACC.lda
	DOSACC2.lda
	Core_ibas*_l*.chk
	VXCFP.chk
	The Fermi energies in this GWcode.

	mkGWIN_lmf2 and its I/O Files
	echo 0|lmfgw
	gwinit
	echo -100|qg4gw

	gwsc script and its I/O Files
	echo 0| lmfgw si
	echo 1| qg4gw
	echo 1|lmfgw si
	lmf2gw
	rdata4gw_v2
	echo 1|heftet
	hchknw
	echo 3|hbasfp0
	echo 0| hvccfp0
	echo 3|hsfp0
	echo 0|hsfp0
	echo 1|hsfp0
	echo 11|hx0fp0
	echo 12|hsfp0
	echo 0|hqpe

	Check list for convergence on GW calculations
	Linear response calculations
	eps_lmfh, epsPP_lmfh: the dielectric functions
	epsPP_lmfh: the dielectric function(No LFC— faster)
	How to calculate correct dielectric funciton?

	Utility

