QSGW calculation for Gd. T.kotani 1dec2018

Key setting: IDMOD=1 for f orbitals. Probably, together with PWMODE=1 /home/usr2/h70252a/SWJ/GdTEST/15p5f pwmode1 66 r33 idmod ctrl.qd -----ITER MIX=A2,b=.2, (smaller b, b=0.2 may give slow but stable convergence for lmf) • **APW** setting • PWMODE=1 G vectors of APW basis sets is given at the energy cutoff at g=0. The set of G vectors are q-independent for PWMODE=1 This gives smoother interpolation in BZ. Stable convergence. SPEC settings • ATOM=Gd Z=64 R=3.3 # we enlarge R (ctrlgen use R=3.0 as upper limit.)-->use Imchk to know MT overlaps EH=-1 -1 -1 -1 RSMH=1.65 1.65 1.65 1.65 EH2=-2 -2 -2 -2 RSMH2=1.65 1.65 1.65 1.65 # we use 2-MTO's for f channel. KMXA={kmxa} LMX=3 LMXA=6 NMCORE=1 # LMXA (charge expanded in MT is up to I=6) PZ=0,15.9,0,5.5 we add LO for 5p and 5f --- +10.0 for 5p means extended lo (for cores). MMOM=0 0 0 7 #Initial condition for magnetic moment for s,p,d,f IDMOD=0 0 0 1 #This fix radial basis for f orbitals. --> you can use FRZWF=T instead (this means all IDMOD=1). Takao found IDMOD is needed to make calculation stable \rightarrow too many MTO basis for 4f. Roles of MTO basis can switches-->seesaw like instability).

Type *Imfa*|*grep conf*. It shows what MTO basis we use for 6s6p5f4d \times 2 basis + 5p5f as local orbital (10+5.9=15.9 for 5p is better setting for semicore.15.9 is 'extended local orbital'--it is similar with MTO.) 16X2+ 3+7= 40 MTO for each spin.

It is better to treat 5p (spilt core)-->grep spill IImf

• SO setting and nk

% const pwemax=3 nk1=13 nk2=13 nk3=9 nit=150 gmax=15 nspin=2 metal=3 so=2 xcfun=1 ssig=1.0 so=2 is for LdotS case. Not needed for Gd.

• Crystal symmetry setting

SYMGRP r4z

Tthis may be needed to have finite orbital moment. (If we set 'find, it means that we use all the lattice symmetry---we use 'find' for Gd). We may need

1

IDU= 0 0 0 2 UH= 0 0 0 0 JH= 0 0 0 0

in order to to show density matrix for 4f channel (two representations shown-- real harmonics and spherical harmonics). (occunum.gd is needed for initial condition of "LDA+U" setting. But it is dummy).

GWinput -----

• Product basis setting 1

«PRODUCT_BASIS>

tolerance to remove products due to poor linear-independency

1.0E-02

lcutmx(atom) = maximum l-cutoff for the product basis. =4 is required for atoms with valence d, like Ni Ga $\frac{6}{6}$

This gives product basis at atomic sites up to I=6. I=6 is required for 4f systems. Proabably because 4fx4f gives I up to I=6.

The numbers

1.0E-02

is a cutoff numbers for linear dependency cutoff for all I=0,1,2,3,4,5,6.

>grep nb lbas

shows number of product basis for each I of atomic sites as

*** lx *** Used nb =	0	6 <(for each I we show numbers of radial functions)
*** lx *** Used nb =	1	5
*** lx *** Used nb =	2	5
*** lx *** Used nb =	3	5
*** lx *** Used nb =	4	4
*** lx *** Used nb =	5	3
*** lx *** Used nb =	6	3
basnfp: BASFP kmx nblocha=		31 189

189 is total numbers of PB at a site.

• Product basis setting 2

Mixed product basis (caution. we have two atomic sites!)

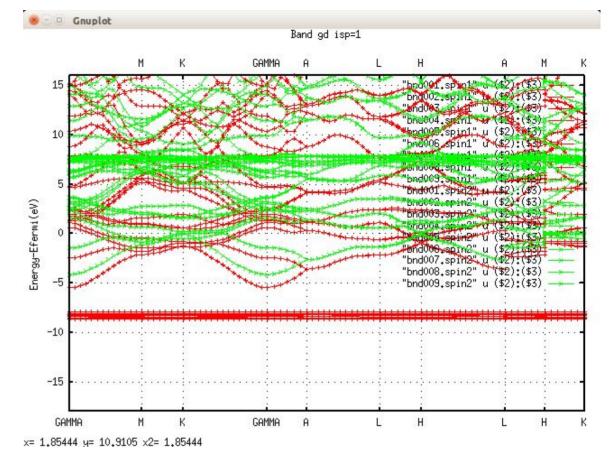
2 3 1 1 1 !4f_p 2 3 2 0 1 !4f_d 2 3 3 0 1 !5f_l

This is for MixedProductBasis to expand 4fx4f orbitals.

k points

n1n2n3 6 6 4

(probably reasonable.


I recommend 6x6x6 for ZB. for 0.1 eV

level of convergence for band gaps)

• Reduce computational efforts. niw 6 emax sigm 2

QpGcut psi 3.0

QpGcut cou 2.5

RESULT

/home/usr2/h70252a/SWJ/GdTEST/15p5f_pwmode1_66_r33_idmod 45 minutes per iteration with 24core. mmom=15.60 -8eV,8eV.

/home/usr2/h70252a/SWJ/GdTEST/15p5f_pwmode1_66_r33_idmod_3 is for QpGcut_psi 4.0 !(See unit_2pioa for unit) |q+G| cutoff for eigenfunction. QpGcut_cou 3.0 !(See unit_2pioa for unit) |q+G| cutoff for Coulomb and W.

emax sigm 3 !(Ry) emax cutoff for Sigma

niw 10 ! Number of frequencies along Im axis. Used for integration to get Sigma_c

4f level is 0.1eV shallower.

A different settings (large cutoff) at 15p5f_pwmode1_66_r33_idmod_lc

Changes from 15p5f_pwmode1_66_r33_idmod

• Larger setting for

QpGcut_psi 4.0 !(See unit_2pioa for unit) |q+G| cutoff for eigenfunction. QpGcut_cou 3.0 !(See unit_2pioa for unit) |q+G| cutoff for Coulomb and W. emax_sigm 3 !(Ry) emax cutoff for Sigma niw 10 ! Number of frequencies along Im axis. Used for integration to get Sigma_c

• lcutmx

1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-02 3.0E-02 3.0E-02

These numbers are cutoff numbers for linear dependency cutoff. Each for I=0,1,2,3,4,5,6.

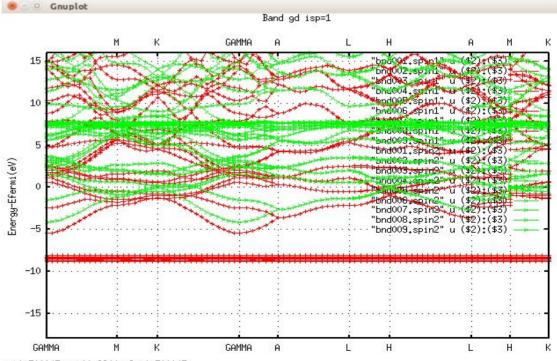
• product basis

Mixed product basis (caution. we have two atomic sites)

3 1 1 1 ! 4f_p

3 2 1 1 !4f d

This is for MixedProductBasis to expand 4fx4f orbitals.


> grep nb				
*** lx ***	Used nb =	0	8	
*** lx ***	Used nb =	1	7	
*** lx ***	Used nb =	2	8	
	Used nb =	3	6	
*** lx ***	Used nb =	4	6	
*** lx ***	Used nb =	5	3	
*** lx ***	Used nb =	6	3	
basnfp:	BASFP kmx	nblocha=	41	237

• pwemax=3 in ctrl file

RESULT

65 minutes per iteration with 24core. mmom=15.58 -8eV,8eV. (~0.15eV deeper 4f level).

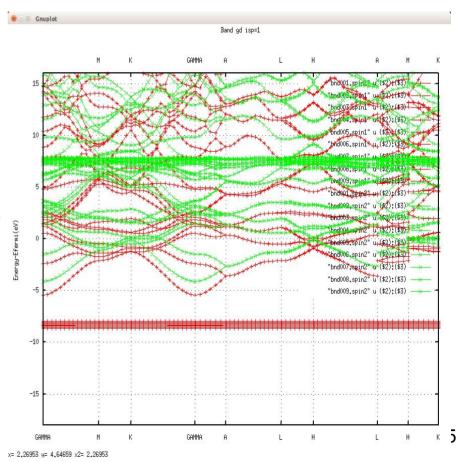
We see good agreement with 15p5f_pwmode1_66_r33_idmod.

x=-0.700043 y=-11.2944 x2=-0.700043

A different settings (large MTO basis) at 7s15p6d5f_pwmode1_pz7555_66

Changes from 15p5f_pwmode1_66_r33_idmod

mixbeta 0.2	
mixing parameter of self-energy $ ightarrow$ not effective.	
Larger setting for	
QpGcut_psi 4.0 !(See unit_2pioa for unit) q+G cutoff for eigenfunction.	
QpGcut_cou 3.0 !(See unit_2pioa for unit) q+G cutoff for Coulomb and W.	
emax_sigm 2 !(Ry) emax cutoff for Sigma	
niw 10 ! Number of frequencies along Im axis. Used for integration to ge	et Sigma_c
Icutmx	
1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-02 3.0E-02 3.0E-02	
product basis	
Mixed product basis (caution. we have two atomic sites)	
3 1 1 1 !4f_p	
3 2 1 1 ! 4f d	
This is for MixedProductBasis to expand 4fx4f orbitals.	
> grep nb lbas	
*** Ix *** Used nb = 0 9	
*** lx *** Used nb = 1 8	
*** lx *** Used nb = 2 10	
*** lx *** Used nb = 3 8	
*** lx *** Used nb = 4 7	
*** lx *** Used nb = 5 3	
*** lx *** Used nb = 6 3	
basnfp: BASFP kmx nblocha= 48 274	


• pwemax=3, PZ=7.5,15.9,6.5,5.5, and FRZWF=T (instead of IDMOD).

Thus we tread 7s, 5p, 6d, 5f as local orbitals.

RESULT

65 minutes per iteration with 24core. mmom=15.56 -8eV,8eV. (~0.01ejV agreement for 4f level).

We see good agreement with 15p5f_pwmode1_66_r33_idmod. Energy bands can be slightly diffrent for higher energy above >10 eV or so.

